

Software Assurance Curriculum Project

Volume I: Master of Software Assurance

Reference Curriculum

Nancy R. Mead, Software Engineering Institute

Julia H. Allen, Software Engineering Institute

Mark Ardis, Stevens Institute of Technology

Thomas B. Hilburn, Embry-Riddle Aeronautical University

Andrew J. Kornecki, Embry-Riddle Aeronautical University

Richard Linger, Software Engineering Institute

James McDonald, Monmouth University

August 2010

TECHNICAL REPORT

CMU/SEI-2010-TR-005
ESC-TR-2010-005

CERT
®
 PROGRAM

Unlimited distribution subject to the copyright.

http://www.cert.org

http://www.cert.org

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for

internal use is granted, provided the copyright and ―No Warranty‖ statements are included with all reproductions

and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

I | CMU/SEI-2010-TR-005

Table of Contents

Acknowledgments v

Executive Summary vii

Abstract xi

1 The Software Assurance Curriculum Project 1

2 Curriculum Project Foundations 6

3 Guidelines for Developing This Curriculum 16

4 Proposed Outcomes When a Student Graduates 18

5 Background Expected of Students Entering the Program (Prerequisites) 24

6 MSwA2010 Curriculum Architecture 28

7 Core Body of Knowledge 32

8 Implementation Guidelines 40

9 Next Steps and Dissemination 44

Appendix A: Bloom’s Taxonomy and the GSwE2009 46

Appendix B: Coverage of the Practices by the Core Body of Knowledge 47

Appendix C: Interview Questionnaire Summary 86

Appendix D: Comparison to Other Programs 107

Appendix E: Comparison of MSwA2010 Knowledge Units to GSwE2009 Core BoK Knowledge
Units and Maturity Levels 111

Appendix F: Course Descriptions for the MSwA2010 Curriculum 116

Glossary 131

Acronyms 134

References 137

II | CMU/SEI-2010-TR-005

III | CMU/SEI-2010-TR-005

List of Figures

Figure 1: High-Level View of the MSwA2010 Project Process 13

Figure 2: Detailed View of the MSwA2010 Project Process 14

Figure 3: Architecture of an MSwA Degree Program 28

Figure 4: Course Alignment Across MSwA Core and Electives 30

Figure 5: MSE with SwA Specialization 31

IV | CMU/SEI-2010-TR-005

V | CMU/SEI-2010-TR-005

Acknowledgments

The authors thank the following individuals for their contributions to this report. We greatly
appreciate their insights and efforts.
• Our sponsor Joe Jarzombek, U.S. Department of Homeland Security (DHS) National Cyber

Security Division (NCSD), had the insight to recognize the need for such a curriculum and
support its development.

• These individuals provided valuable feedback through their responses to our questionnaire
on software assurance education.

− Warren Axelrod, Delta Risk
− Jennifer L. Bayuk, Information Security Specialist
− John Carlson, Morgan Stanley
− Mary Ann Davidson, Oracle
− Cassio Goldschmidt, Symantec
− Eric Guerrino, BNY Mellon
− Frank Gutcher, The Boeing Company
− Jim Krodel, Pratt & Whitney Aircraft
− Andrew McGettrick, University of Strathclyde, Scotland, UK
− Paul N. Smocer, BITS & FSTC, Financial Services Roundtable

• These individuals worked with us on the planning and execution of the work in the early
stages.

− Michael Ryan, Dublin City University
− Dan Shoemaker, University of Detroit Mercy

• These individuals provided critical insights in their review of this document.

− Warren Axelrod, Delta Risk
− Carol Sledge, Software Engineering Institute
− Yair Levy, Nova Southeastern University

We also acknowledge the work done by the Integrated Software & Systems Engineering
Curriculum (iSSEc) Project on the Graduate Software Engineering 2009 (GSwE2009)
Curriculum Guidelines for Graduate Degree Programs in Software Engineering, Version 1.0
document [iSSEc 2009]. We also acknowledge the Department of Homeland Security’s work on
the Software Assurance Curriculum Body of Knowledge (SwACBK) [DHS 2010B]. The
GSwE2009 and SwACBK are part of the foundation upon on which we based the Master of
Software Assurance curriculum. The DHS NCSD Workforce Education & Training Working
Group provided valuable review comments on the draft curriculum document.

In addition, we thank the following individuals from the Software Engineering Institute for their
support: David Biber, Jennifer Kent, and Tracey Tamules.

VI | CMU/SEI-2010-TR-005

VII | CMU/SEI-2010-TR-005

Executive Summary

Modern society is deeply and irreversibly dependent on software systems of remarkable scope and

complexity in areas including defense, government, energy, communication, transportation,

manufacturing, and finance. The security and correct functionality of these systems are absolutely

vital; poor or absent security and incorrect functionality can have devastating consequences

including loss of life. Yet these software systems (and systems of systems) continue to exhibit

errors and vulnerabilities and are regularly subject to attack and compromise. Attacker actions can

result in severe impacts and losses for the organizations that build, deploy, and operate these

systems, as well as the business partners and customers that use them.

Recognizing these realities, the U.S. Department of Homeland Security (DHS) National Cyber

Security Division (NCSD) enlisted the resources of the Software Engineering Institute at Carnegie

Mellon University to develop a reference curriculum for a Master of Software Assurance degree

program and define transition strategies for future implementation. This report is Volume I of the

project. Volume II focuses on an undergraduate curriculum specialization for software assurance

[Mead 2010].

For the purposes of this curriculum, the discipline of software assurance is targeted specifically to

the security and correct functionality of software systems, whatever their origins, subject matter,

or operational environments. The need for a master‘s level program in this discipline has been

growing for years.

The purpose of this Master of Software Assurance Curriculum project is to identify and present a

core body of knowledge from which to create such a degree program, as a stand-alone offering

and as a track within existing software engineering and computer science master‘s degree

programs. The foundation upon which this work rests includes the Graduate Software

Engineering 2009 (GSwE2009) Curriculum Guidelines for Graduate Degree Programs in

Software Engineering [iSSEc 2009], work on the DHS Security Build Security In website by

Carnegie Mellon University‘s Software Engineering Institute [DHS 2010a], the Software

Assurance Curriculum Body of Knowledge (SwACBK) [DHS 2010b], and the authors‘

discussions and professional experience. Authors of this curriculum include faculty and

researchers from Carnegie Mellon University, Embry-Riddle Aeronautical University, Monmouth

University, and Stevens Institute of Technology.

The primary audience for the Master of Software Assurance Curriculum (MSwA2010) is faculty

who are responsible for designing, developing, and maintaining graduate software engineering

programs that have a focus on software assurance knowledge and practices.

For purposes of the MSwA2010 curriculum defined in this report, the definition of software

assurance has been extended from the generally accepted one offered by the Committee on

National Security Systems [CNSS 2009]. This is the expanded definition:

VIII | CMU/SEI-2010-TR-005

Application of technologies and processes to achieve a required level of confidence
1
 that

software systems and services function in the intended manner, are free from accidental or

intentional vulnerabilities, provide security capabilities appropriate to the threat

environment, and recover from intrusions and failures.

The extended definition emphasizes the importance of both technologies and processes in

software assurance, observes that computing capabilities may be acquired through services as well

as new development and evolution, recognizes that security capabilities must be appropriate to the

expected threat environment, and identifies recovery from intrusions and failures as an important

capability for organizational continuity and survival. This definition is expanded in Section 2 by

decomposing it into its constituent components and concepts.

Areas of special emphasis and unique properties (shown in italics) that distinguish this curriculum

from traditional software engineering and computer science programs include a focus on

 software and services

 development and acquisition

 security and correct functionality

 software analytics

 system operations

 auditable evidence

The authors performed seven steps to develop the MSwA2010 curriculum content, including

developing project guidelines; identifying credible, reputable sources to consider; selecting life-

cycle phase topics (such as requirements engineering) and organizing candidate practices and

categories in these topic areas; soliciting external feedback from recognized faculty, thought

leaders, and practitioners; and developing curriculum outcomes and the core body of knowledge.

Because of the technical nature of software assurance, we anticipate that students entering an

MSwA program will possess undergraduate degrees in disciplines such as computer science;

software engineering; electrical, electronic, and computer engineering; mathematics; or

information systems. We present a list of required and desired prerequisites in three categories:

computing foundations, software engineering, and security engineering. These prerequisites will

likely be satisfied through some combination of undergraduate courses, work experience, and

possibly remedial education prior to the start of an MSwA program.

The outcomes (knowledge, skills, and capabilities) that faculty members can use to structure and

guide curriculum development and that graduates can expect after completing the program are

organized into the following topics:

 Assurance Process and Management

 Assurance Across Life Cycles

 Risk Management

 Assurance Assessment

 Assurance Management

1
 In the CNSS definition, the use of the word ―confidence‖ implies that there is a basis for the belief that software

systems and services function in the intended manner.

IX | CMU/SEI-2010-TR-005

 Assurance Product and Technology

 System Security Assurance

 System Functionality Assurance

 System Operational Assurance

In developing the core body of knowledge (BoK), each outcome was captured as a knowledge

area, and each knowledge area was subdivided into a set of knowledge units with assigned

cognitive levels from an education classification system (the Bloom‘s Taxonomy system, as

described in Appendix A).

Using the MSwA2010 BoK, the curriculum architecture identifies the minimum content that all

degree programs should include. The architecture and course structures can be used to organize

and package the body of knowledge. The MSwA2010 BoK provides for preparatory content, core

course content, elective content, and a capstone experience through which students can

demonstrate their understanding and ability to apply what they have learned. The curriculum

architecture is similar to the one proposed in the GSwE2009 and is compatible with software

engineering master‘s programs that are based on the GWsE2009 curriculum. The MSwA2010

curriculum is intended to provide a structural basis for programs that deliver the outcomes

described.

Having a defined set of student prerequisites, established outcomes, a core body of knowledge,

and a curriculum architecture is necessary but not sufficient. Often the most challenging part of

putting a new program or a new track in place is implementation. This report provides several

guidelines and recommendations for faculty members to consider when contemplating such a

program. These recommendations include suggestions for planning and launching a new program,

recruiting and preparing students, finding and training faculty, acquiring resources, and teaching

capstone courses effectively.

This report closes with a description of the additional activities that are needed to support

disseminating information about the MSwA2010 curriculum and transitioning it into both new

and existing degree programs and tracks. In order for this work to be considered successful, the

curriculum must be available, understood by the targeted academic and hiring communities,

viewed as a key reference for software assurance curriculum development, and used in the

development and modification of software-assurance-focused curricula.

X | CMU/SEI-2010-TR-005

XI | CMU/SEI-2010-TR-005

Abstract

Modern society depends on software systems of ever-increasing scope and complexity in virtually

every sphere of human activity, including business, finance, energy, transportation, education,

communication, government, and defense. Because the consequences of failure can be severe,

dependable functionality and security are essential. As a result, software assurance is emerging as

an important discipline for the development, acquisition, and operation of software systems and

services that provide requisite levels of dependability and security.

This report is the first volume in the Software Assurance Curriculum Project sponsored by the

U.S. Department of Homeland Security. This report presents a body of knowledge from which to

create a Master of Software Assurance degree program, as both a stand-alone offering and as a

track within existing software engineering and computer science master‘s degree programs. The

report details the process used to create the curriculum and presents the body of knowledge,

curriculum architecture, student prerequisites, and expected student outcomes. It also outlines an

implementation plan for faculty and other professionals who are responsible for designing,

developing, and maintaining graduate software engineering programs that have a focus on

software assurance knowledge and practices. The second volume, Undergraduate Course

Outlines (CMU/SEI-2010-TR-019), presents seven course outlines that could be used in an

undergraduate curriculum specialization for software assurance.

XII | CMU/SEI-2010-TR-005

1 | CMU/SEI-2010-TR-005

1 The Software Assurance Curriculum Project

The purpose of the Master of Software Assurance Curriculum project (MSwA2010) is to develop

and present a core body of knowledge (BoK) from which to create a master‘s level degree

program in software assurance, as a stand-alone offering and as a track within existing software

engineering and computer science master‘s degree programs. The foundation upon which this

work rests includes the Graduate Software Engineering 2009 (GSwE2009) Curriculum

Guidelines for Graduate Degree Programs in Software Engineering [iSSEc 2009] and work on

the U.S. Department of Homeland Security Build Security In website done by Carnegie Mellon

University‘s (CMU) Software Engineering Institute (SEI) [DHS 2010a]. Authors of this

curriculum include faculty and researchers from CMU, Embry-Riddle Aeronautical University,

Monmouth University, and Stevens Institute.

The Need for Software Assurance Education

Modern society is deeply and irreversibly dependent on software systems of remarkable scope and

complexity in areas including defense, government, energy, communication, transportation,

manufacturing, and finance. The security and correct functionality of these systems are absolutely

vital. Yet they continually exhibit errors and vulnerabilities, and they are regularly subject to

attack and compromise with potentially severe consequences for the organizations that build,

deploy, and operate them, as well as the business partners and customers that use them.

Recognizing these realities, the U.S. Department of Homeland Security (DHS) National Cyber

Security Division (NCSD) enlisted the resources of the CERT
®2

 Program at the SEI to develop a

curriculum for a Master of Software Assurance degree program and define transition strategies for

implementation. For the purposes of this curriculum, the discipline of software assurance is

targeted specifically to the security and correct functionality of software systems, whatever their

origins, subject matter, or operational environments. The need for a master‘s level program in this

discipline has been growing for years.

 At the Knowledge Transfer Network Workshop in Paris in March 2009, cybersecurity

education was recognized as part of the information security, privacy, and assurance

roadmap vision and as one of its lines of development [LSEC 2009].

 A study by the nonpartisan Partnership for Public Service points out that ―[President

Obama‘s] success in combating these threats [to cybersecurity] and the safety of the nation

will depend on implementing a comprehensive and coordinated strategy—a goal that must

include building a vibrant, highly trained and dedicated cybersecurity workforce in this

country.‖ The report found that, ―The pipeline of new talent [with the skills to ensure the

security of software systems] is inadequate. . . . only 40 percent of CIOs [chief information

officers], CISOs [chief information security officers] and IT [information technology] hiring

managers are satisfied or very satisfied with the quality of applicants applying for federal

cybersecurity jobs, and only 30 percent are satisfied or very satisfied with the number of

qualified candidates who are applying‖ [PPS 2009].

2
 ® CERT is a registered mark owned by Carnegie Mellon University.

2 | CMU/SEI-2010-TR-005

 The New York Times emphasized the need for cybersecurity education in quoting Dr. Nasir

Memon, a professor at the Polytechnic Institute of New York University: ―There is a huge

demand, and a lot more schools have created programs, but to be honest, we‘re still not

producing enough students‖ [Drew 2009].

 CMU and CERT have been active in the software assurance area for years, particularly in the

Survivability and Information Assurance (SIA) Curriculum and the Scholarship for Service

program [CERT 2007]. The SIA Curriculum has been provided to thousands of faculty

members and other interested parties. The Federal Cyber Service‘s Scholarship for Service

program offers scholarships to applicants who attend an approved institution of higher

learning and agree to work for several years in the cybersecurity area at U.S. government

organizations after graduation [OPM 2010]. The popularity and growth of this program is an

indicator of the pressing need for cybersecurity expertise.

 In discussions with industry and government representatives, we have found that the need for

more capacity in cybersecurity continues to grow. Anecdotal feedback from the authors‘ own

students indicates that even a single course with a cybersecurity focus enhances the students‘

positioning in the job market. Students felt they were made job offers they would not have

received otherwise.

 Another aspect of the need occurs in educational institutions that need assistance in starting a

cybersecurity concentration. Based on our collective experience in software engineering

education, we know that it can be very difficult to start a new program or track from scratch,

so we plan to assist those organizations and faculty members that wish to undertake such an

endeavor. Our objective is to support their needs while recognizing that there are a variety of

implementation strategies.

Definition of Software Assurance

In developing a curriculum for software assurance, it is important to start with a clear and concise

definition of the discipline. The Committee on National Security Systems defines software

assurance as follows [CNSS 2009]:

Software assurance (SwA) is the level of confidence
3
 that software is free from

vulnerabilities, either intentionally designed into the software or accidentally inserted at any

time during its life cycle, and that the software functions in the intended manner.

For purposes of the curriculum defined in this report, the CNSS definition has been expanded as

follows:

Application of technologies and processes to achieve a required level of confidence
3
 that

software systems and services function in the intended manner, are free from accidental or

intentional vulnerabilities, provide security capabilities appropriate to the threat

environment, and recover from intrusions and failures.

The expanded definition emphasizes the importance of both technologies and processes in

software assurance, observes that computing capabilities may be acquired through services as well

3
 In the CNSS definition, the use of the word ―confidence‖ implies that there is a basis for the belief that software

systems and services function in the intended manner.

https://www.sfs.opm.gov/
https://www.sfs.opm.gov/

3 | CMU/SEI-2010-TR-005

as new development, recognizes that security capabilities must be appropriate to the expected

threat environment, and identifies recovery from intrusions and failures as an important capability

for organizational continuity and survival.

Audience

The primary audience for the MSwA2010 curriculum is faculty who are responsible for

designing, developing, and maintaining graduate software engineering programs that have a focus

on software assurance knowledge and practices. In addition, the MSwA2010 project will likely

interest those in development and acquisition organizations who have responsibility for staffing

positions in software assurance and for providing their software engineers with increased software

assurance capabilities. The MSwA2010 project also provides a model to those who assess

software-assurance-oriented programs for curriculum organization, content, outcomes, and

support.

Scope

The scope of this report is to identify a curriculum BoK for a master‘s degree in software

assurance, or for a software assurance track within a master‘s degree program in computer science

or software engineering. We developed this material intending that this would be a degree for

practitioners, not for researchers, and we did not consider, for example, the content of a doctoral

program in software assurance. Because it is likely that there may be overlap between upper-

division undergraduate courses and first-year graduate courses in software assurance, we

considered undergraduate coursework in software assurance in a separate report, Software

Assurance Curriculum Project Volume II: Undergraduate Course Outlines [Mead 2010]. It is also

possible that this material could be used to develop continuing education or certificate programs

in both government and industry. Because of our affiliations, this report is U.S.-centric, although

we would welcome adaptation of this material for use internationally or enhancement of the report

to include international programs.

Areas related to software assurance, such as software safety, reliability, and dependability, as well

as software process and management models, were not the primary focus of this project. We

recognize that these areas provide important contributions to software assurance; the curriculum

builds on and in some areas extends these capabilities. Information assurance (distinct from

software assurance) is also not the primary focus of this report. Although we consider protection

of information in deployed software to be important, we believe that this has been adequately

addressed by existing education and training programs. To the extent that data is part of a

software system, we are concerned with data insofar as it is related to software assurance.

Comparison to Other Programs

The curriculum described in this report can be offered as an independent master‘s degree program

in software assurance. It can also be offered as a track in a Master of Software Engineering (MSE)

or a Master of Computer Science degree program. This report describes how it can be

incorporated as a track in an MSE degree program if the software engineering program is based

on the GSwE2009 recommendations. We envision that it could be incorporated as a track in other

degree programs as well, but we have not yet done the needed analysis to support it. The

independent master‘s degree program in software assurance we describe assumes a student enters

4 | CMU/SEI-2010-TR-005

the program with an undergraduate degree in computer science [ACM 2008], computer

engineering [IEEE-CS 2004a], or software engineering [IEEE-CS 2004b] and supplements the

content of those degrees with appropriate prerequisite materials. For students with other

backgrounds, the program incorporates the necessary portions of computer science and software

engineering preparatory material to allow them to study software assurance.

Organization of This Report

Section 2 expands the definition of software assurance by decomposing it into its constituent

components and concepts. This section describes unique properties of the MSwA2010 curriculum

that distinguish it from traditional software engineering and computer science programs. It then

presents a description of the seven-step process that we used to develop MSwA2010 curriculum

content, including Figures 1 and 2, which present high-level and detailed views of the

MSwA2010 development process. Readers who are interested in the results of this report, but not

the process used to arrive at it, can skip this section.

Section 3 presents MSwA2010 project guidelines that were used to establish the foundation,

scope, and boundaries for project activities and decision making. These 14 guidelines, both

strategic and tactical, draw heavily from the GSwE2009. Readers who are interested in the results

of this report, but not the guidelines used by the curriculum development team, can skip this

section.

Section 4 defines the outcomes (knowledge, skills, and capabilities) that faculty members can use

to structure and guide curriculum development and that graduates can expect after completing the

program. Outcomes are organized into the following knowledge areas:

 Assurance Process and Management

 Assurance Across Life Cycles

 Risk Management

 Assurance Assessment

 Assurance Management

 Assurance Product and Technology

 System Security Assurance

 System Functionality Assurance

 System Operational Assurance

Section 5 describes required and desired prerequisite knowledge and skills that students of an

MSwA program should have mastered prior to starting an MSwA program. Because of the

technical nature of software assurance, it is anticipated that entrants to an MSwA program will

possess undergraduate degrees in disciplines such as computer science; software engineering;

electrical, electronic, and computer engineering; mathematics; or information systems.

Prerequisites will likely be satisfied through some combination of undergraduate courses, work

experience, and possibly remedial education prior to the start of an MSwA program.

Section 6 presents candidate architectures and course packaging that can be used to organize the

MSwA2010 BoK to achieve the outcomes described in Section 4. The architecture provides for

preparatory content, core course content, elective content, and a capstone experience through

5 | CMU/SEI-2010-TR-005

which students can demonstrate their understanding and ability to apply what they have learned.

The curriculum architecture is similar to the one proposed in the GSwE2009 and is compatible

with software engineering master‘s programs that are based on that curriculum.

Section 7 describes the core BoK for the MSwA2010 curriculum. It is structured into seven

knowledge areas (as listed in Section 4), with each knowledge area subdivided into a set of

knowledge units. The knowledge units are defined in terms of the Bloom cognitive levels, an

educational classification system (refer to Appendix A).

Section 8 includes a number of issues that faculty members need to address when implementing

any new academic program, including a master‘s program in software assurance. The issues

include planning and launching a new program, recruiting and preparing students, finding and

training faculty, acquiring resources, and teaching capstone courses effectively.

Section 9 closes the report by describing the additional activities that are needed to support

disseminating and transitioning the MSwA2010 curriculum into degree programs and tracks, both

new and existing. In order for this work to be considered successful, the curriculum must be

available, understood by the targeted academic and hiring communities, viewed as a key reference

for software assurance curriculum development, and used in the development and modification of

software-assurance-focused curricula.

Details on Bloom‘s Taxonomy and its application to the MSwA2010 BoK, software development

life-cycle (SDLC) practices and their relationship to the core BoK, a summary of responses to our

external questionnaire, and other supporting details are contained in the appendices. Note that

Appendix B contains an extensive bibliography, which will be of interest to educators who

implement an MSwA degree program.

6 | CMU/SEI-2010-TR-005

2 Curriculum Project Foundations

To lay the foundation for the MSwA2010 curriculum project, we expanded the definition of

software assurance by decomposing it into its constituent components and concepts. This

expansion and clarification sets the boundary for what is considered in and out of scope for the

curriculum. We highlight unique properties of the MSwA2010 curriculum that distinguish it from

traditional software engineering and computer science programs while also pointing out

commonalities. We close this section with a description of the seven-step process that was used to

develop MSwA2010 curriculum content.

Implications of the Definition of Software Assurance for Curriculum Development

The definition of software assurance we use in this report is as follows:

Application of technologies and processes to achieve a required level of confidence
4
 that

software systems and services function in the intended manner, are free from accidental or

intentional vulnerabilities, provide security capabilities appropriate to the threat

environment, and recover from intrusions and failures.

This definition provides overarching guidance for the MSwA2010 curriculum development. It is

thus illuminating to parse the definition into its constituent components as a first step in

understanding the objectives and ultimate structure of the curriculum.

 focus on both software systems and services

Software capabilities can originate from many sources, including new system development;

legacy system evolution; system acquisition through a variety of means, including supply

chains, open source, and commercial, off-the-shelf (COTS); and service acquisition through

methods including service-oriented architecture (SOA), cloud computing, and virtualization.

Systems often aggregate combinations of these sources, all of which require a level of

assurance with respect to correct functionality and security. In some cases, such as service

acquisition, the software itself may not be available for analysis, and assurance must be

achieved through other means. Thus, the MSwA2010 curriculum must focus on both software

systems and services in meeting assurance objectives.

 software systems and services function in the intended manner

Software systems and services must exhibit levels of quality and correct functionality

commensurate with the consequences of their failure. Developing quality software requires

rigorous software engineering capabilities and best practices in technologies and processes.

Effective development, testing, and management skills are always required. Software

assurance adds key perspectives and capabilities to development and acquisition processes to

further improve quality. Thus, the MSwA2010 curriculum must include technologies and

processes to achieve correct functionality and reduce errors in software development and

evolution, as well as in software and service acquisition.

4
 In the CNSS definition, the use of the word ―confidence‖ implies that there is a basis for the belief that software

systems and services function in the intended manner.

7 | CMU/SEI-2010-TR-005

 software systems and services are free from accidental or intentional vulnerabilities

In operational use, both legitimate users and intruders seeking to disrupt operations or obtain

access to information use software systems. Intruders seek vulnerabilities in software they

can use to gain access and control. Avoiding vulnerabilities (where possible) and eliminating

vulnerabilities (where necessary) require thoroughly analyzing software and applying

rigorous security requirements engineering, architecture and design, coding, and testing

techniques. Thus, the MSwA2010 curriculum must focus on the development of robust

software systems and the acquisition of software services that do not provide means to

achieve unauthorized access and exploitation of vulnerabilities.

 software systems and services provide security capabilities appropriate to the threat

environment

Software systems operate in threat environments whose virulence can vary with the value of

the functions and information the systems provide. High-value systems will be subjected to

sophisticated attacks at all levels and must incorporate security capabilities to ensure that

intrusion is as difficult and costly as possible to the intruder. Virtually all systems must

implement security capabilities, such as authentication, authorization, non-repudiation, and

privacy, and support the properties of availability, confidentiality, and integrity. Thus, the

MSwA2010 curriculum must include threat environment analysis and security assurance

technologies and methods at application, system, and network levels. The curriculum must

also include methods for assuring security in the acquisition of software and services and for

monitoring security in system operations.

 software systems and services recover from intrusions and failures
5

No amount of security and discipline can guarantee that systems will not be exploited and

compromised. Operational continuity and survival must be assured even in adverse

circumstances. Thus, the MSwA2010 curriculum must include methods to define and assure

that capabilities exist to recover from intrusions, failures, and accidents.

These objectives are to be achieved through the following means:

 application of technologies and processes

Assurance technologies include analytical areas such as verifying software functionality;

analyzing software vulnerabilities, threat environments, and security capabilities; and reverse

engineering software to determine as-built functionality and security properties. Assurance

processes define methods for achieving required levels of confidence that can be integrated

into traditional software development and acquisition process models. Thus, in addition to a

technology focus, the MSwA2010 curriculum must include a process-oriented view of

assurance activities, including organizational goals, objectives, and constraints; risk

analysis and reduction; and integration of assurance processes into organizational

processes, methods, and procedures.

5
 Includes recovery from accidents as well.

8 | CMU/SEI-2010-TR-005

 achieve a required level of confidence that assurance goals are met

A key responsibility of software assurance is to create auditable evidence that supports

achievement of assurance goals. Assurance requirements can vary with business objectives,

threat environments, system capabilities, risk analysis, legal and compliance requirements,

and internal and external standards. Thus, the MSwA2010 curriculum must provide methods

for cost-effective and auditable assurance that satisfy organizational and technical

objectives, requirements, and constraints.

Principal Focus Areas for MSwA2010 Curriculum Development

This analysis of the definition of software assurance highlights areas of special emphasis for the

MSwA2010 curriculum. This analysis also reveals differences and commonalities with traditional

computer science and software engineering curricula.

 focus on software and services

Many organizations obtain computing capabilities through contracted services. The

MSwA2010 curriculum must address correct functionality and security of services when the

software itself may be unavailable. Software services are typically not emphasized in

traditional computer science and software engineering curricula.

 focus on development and acquisition

Many organizations acquire software from a variety of sources rather than internally

developing software. The MSwA2010 curriculum must address the correct functionality and

security of acquired as well as newly developed software. Although open source and COTS

software are considered in some programs, acquisition processes are typically not a focus

area for computer science and software engineering curricula.

 focus on security and correct functionality

Assured software must not only be secure but provide correct functionality as well. Security

must be an overarching focus area for the MSwA2010 curriculum; however, the curriculum

must also address methods for assuring correct functionality. Some coverage of software

security and technologies for verification and validation is often found in computer science

and software engineering curricula; the MSwA2010 curriculum will apply and extend these

foundations.

 focus on software analytics

Assurance will often require analysis of existing software functionality and properties

through reverse engineering methods. The MSwA2010 curriculum must address

technologies for abstracting and assessing existing software and associated engineering

artifacts. Computer science and software engineering curricula do not typically provide in-

depth coverage of software analytics and reverse engineering topics.

 focus on system operations

Assurance activities extend to monitoring system operations. The MSwA2010 curriculum

must address monitoring technologies and methods, as well as recovery from intrusions and

failures. While information technology (IT) and information systems programs often include

9 | CMU/SEI-2010-TR-005

topics in system operations that can be built upon and extended, special emphasis on

recovery and organizational continuity and survivability will be required as well.

 focus on auditable evidence

Assurance activities must be guided by business environments, objectives, risks, and

constraints and must produce auditable evidence for security properties and correct

functionality that satisfies requirements, including compliance requirements. While some

coverage of these topics can be found, they are not typically emphasized in traditional

computer science and software engineering curricula.

These focus areas highlight unique properties of the MSwA2010 curriculum and also reveal areas

of commonality and mutual reinforcement with computer science and software engineering

programs. In some areas, the MSwA2010 curriculum builds on foundations from these curricula

and extends coverage of technologies and processes for application to the specific needs of

software assurance.

Although our focus on software assurance strongly emphasizes security and correct functionality,

there are many other quality attributes that should be considered in software development,

acquisition, and deployment. These include quality attributes such as performance, safety,

modifiability, and privacy. In some cases, tradeoff analysis may be needed between some of these

attributes, while in other cases the quality attributes may reinforce each other.

Let‘s take a closer look at safety as an example. Due to the increasing role of software in the

nation‘s critical infrastructure, software‘s impact on system safety must be addressed. Examples

of industrial control systems requiring particular attention are the power grid, nuclear power

stations, water and food plants, chemical factories, oil refineries, railway systems, and air traffic

control systems. Recently the tendency has been to replace older federated and well-protected

discrete controls with new, integrated, complex digital systems that are not only interconnected in

the control network but also connected to the general computing network—for the purpose of

remote control, data collection, monitoring, and so on. Often developers of these new systems are

not fully aware of the safety issues that such new architectures may bring, and IT professionals

may neglect the need for additional safety precautions like analog or mechanical backup.

Developers of control systems may also not be aware of security issues and vulnerabilities

resulting from general computing network connectivity, and control engineers may not be familiar

with operational security issues like leaving physical connections open, retaining default

passwords, and not keeping anti-virus software up to date. To increase confidence in the

assurance of industrial computer systems, security concerns have to be taken into account, and the

mutual relationships of safety and security studied and reconciled.

Graduates of a Master of Software Assurance degree program must know how important the

range of quality attributes are. As part of lifelong learning, they must also acquire the knowledge

needed to address these and other quality attributes in specific domains and applications.

Process Used to Develop MSwA2010 Curriculum Content

We used the following seven-step process to develop the software assurance curriculum topics,

practices, knowledge units, outcomes, and core BoK.

10 | CMU/SEI-2010-TR-005

Step 1: Develop Project Guidelines

First, we developed a set of project guidelines, listed in Section 3. These guidelines provided

foundation and guidance for the project scope, activities, and decision making. Their development

also helped us to coalesce and better understand the project‘s purpose.

Step 2: Identify and Review Sources

While addressing security during the software and system development life cycle is just starting to

garner attention from project managers and business leaders, there is a growing body of

knowledge on the subject. In parallel with the guidelines activity, we identified and reviewed

credible and reputable sources of software security practices in industry, government, and

academia (at the graduate and undergraduate levels). In all, 29 sources were considered; these are

identified in Appendix B.

Step 3: Define Topics

We used Software Security Engineering: A Guide for Project Managers as the organizing

structure for our review of sources in Step 2 [Allen 2008]. The topics in this book apply to

software assurance, even though the book is written for project managers. We supplemented the

book‘s structure to reflect our experience, particularly with respect to software analysis, services,

systems of systems, and technical issues that arose during our review. This resulted in identifying

nine topics as follows. The tables in Appendix B include a mapping of knowledge areas to each

topic.

1. Software security practices that span the SDLC (considered in all life-cycle phases)

2. Requirements engineering practices

3. Architecture and design practices

4. Coding practices

5. Testing practices

6. Analysis of software and services in static and operational contexts

7. Assembly, evolution, and deployment

8. Risk mitigation strategies for system complexity and scale

9. Governance and management practices

Step 4: Define SDLC Practices and Categories

We evaluated sources for the nine topics listed above and detailed in Appendix B to identify and

capture practices that fit within the scope of each topic. We included redundant practices to

identify breadth of practice use across sources. Once all tables reflected practices from all

applicable sources, we aggregated and abstracted the topics into high-level categories that could

be used to describe groups of related practices. For example, in architecture and design, the

categories are

 architecture

 design concepts

 module/component design

 detailed design

 design review and assessment

11 | CMU/SEI-2010-TR-005

Governance and management, a broader practice topic, includes

 business case

 risk management

 awareness

 training

 project management

 software assurance practices integrated with the SDLC

 transition

 measurement

 ethics

 compliance

 evaluation

 acquisition

At the same time we were determining SDLC practices, we also developed the following four

conceptual categories that helped us understand and assess the practices. The categories parse the

definition of software assurance and also illuminate important dependencies among its elements.

They serve as a high-level abstraction of the SDLC practices.

 security assurance

Required levels of assurance cannot be achieved if security capabilities are insufficient for

the threat environment. Security is the bedrock and centerpiece of the software assurance

discipline.

 functionality assurance

Defective software cannot be secure because defects can introduce vulnerabilities for attack.

Security functionality must itself be properly implemented, or else it will fail to protect the

software. The intended functionality of a system, that is, the services it provides for its users,

must be properly implemented as well, or else it will fail to satisfy organizational objectives.

 operations assurance

Security and functionality assurance are engineering activities that specify, develop, and

evaluate system capabilities for dealing with threat environments while providing required

services to users. These responsibilities extend to operations as well, to monitor and improve

system capabilities in response to both changing threats and evolving user needs. In addition,

the assurance discipline must provide operational means to respond to intrusions and

maintain continuity of operations in adverse circumstances.

 assurance processes and management

The activities of security, functionality, and operations assurance can involve many tasks and

participants over substantial periods of time. To be effective, these activities require

processes and practices within the context of organizational objectives and constraints, as

well as planning, scheduling, tracking, and reporting in their execution.

12 | CMU/SEI-2010-TR-005

The relationship of these conceptual categories to the overall MSwA2010 content development

process is depicted in Figure 1 and Figure 2.

Step 5: Solicit External Feedback

Once we defined SDLC practices and categories (see Appendix B), we sought input from

representatives among managers, practitioners, and educators. We wanted to know their

requirements for graduates of degree programs based on this curriculum and insights on

curriculum outcomes. We also wanted to make sure we were on the right track and had not

overlooked a significant reference, source, or curriculum. We developed a three-page

questionnaire, included in Appendix C. The questionnaire sought answers to these two high-level

questions:

 Assume you are interviewing to fill a position for a specialist in software assurance or

software security. Please rate each of the following capabilities
6
 you might consider in hiring

such an individual. Provide responses using two ways of rating these capabilities:

 how you currently rate such capabilities for a prospective employee regardless of their

academic background and experience (current)

 how you would rate a prospective employee who had a master‘s degree with a focus on

software assurance

 Are there other capabilities or issues that are important to your organization when hiring a

software assurance or software security professional?

Responses to our questionnaire are summarized in Appendix C. As expected, these responses

resulted in updates to the practices tables in Appendix B.

Step 6: Develop Outcomes and Core Body of Knowledge

While we were capturing external feedback, we were also working on identifying curriculum

outcomes (refer to Section 4) and the core BoK (refer to Section 7).

Figure 1 is a high-level view of the process we used to develop the outcomes and BoK. As

indicated in the figure, the project guidelines greatly influenced all subsequent project activities,

including developing the outcomes and BoK.

The outcomes were also significantly influenced by the GSwE2009 and questionnaire responses.

Outcomes were essentially a refinement and evolution of the SDLC practices and categories (Step

4) and represent the essence of what should be expected from a graduate of an MSwA degree

program. Refer to Section 4 for a description of the MSwA2010 outcomes.

6
 Examples include: think like an attacker; apply software assurance practices during requirements engineering,

architecture and design, coding, and testing; be able to make technical arguments on the value of software
assurance.

13 | CMU/SEI-2010-TR-005

Figure 1: High-Level View of the MSwA2010 Project Process

We developed the BoK by adding detail and expanding each outcome in a three-level structure: a

knowledge area expanded into knowledge units, and each knowledge unit expanded into

knowledge topics. Refer to Section 7 for a description of the knowledge areas, units, and topics.

We used the project guidelines and conceptual components as a guidance framework to develop

both the outcomes and BoK. The external questionnaire (Step 5) was an important influence on

this activity by providing a check on the relevance and currency of the process used to develop the

MSwA2010 curriculum content.

Figure 2 is an expansion of Figure 1, providing additional detail on the MSwA2010 content

development process.

influences

refines

influences

influencesinfluences

influences

expands

refines

SDLCPractices

MSwA2010Sources

(Appendix B)

MSwA2010

Conceptual Categories

MSwA2010Project

Guidelines (Section 3)

MSwA2010BoK

(Section 7)

MSwA2010Outcomes

(Section 4)
External

Questionnaires

(Appendix C)

14 | CMU/SEI-2010-TR-005

Figure 2: Detailed View of the MSwA2010 Project Process

Step 7: Compare Knowledge Units to Practices

We performed a cursory gap analysis by comparing the BoK knowledge units to the SDLC

practices and categories. We wanted to ensure that all practice categories were covered by at least

one knowledge unit or that we made a conscious decision to exclude some practice topic, for

example, privacy, if we felt it was out of scope. The results of this effort appear in Appendix B.

This exercise was neither exhaustive nor rigorous, and the result should not be construed as a

complete traceability.

This cross-check did result in updates to the practices tables, knowledge units, and outcomes, so it

accomplished the desired result.

influences

refines

influences

influences

influences

influences
expands

refines

Software Assurance Definition

Tailorable Curriculum
Recommendations

Professional Master’s Degree

Appropriate Number of Credits

Founded on Variety of
Disciplines

Integrates Theory and
Practice

Ongoing Review and Revision

Sensitive to Dynamic Nature

Fundamental Knowledge and
Skills

Based on Similar Recognized
Efforts

Nontechnical Aspects of
Practice

Implementation Strategies and
Tactics

Expected Entry Preparation

General (Intro to SwA)

Requirements Engineering

Architecture and Design

Coding

Testing

Assembly, Evolution,
Deployment, and Operations

Analysis for Assurance

Governance and
Management

Assurance References

Assurance Courses

Software CurriculumModels

BoKModels

Security Assurance

Functionality Assurance

Operations Assurance

Assurance Processes and Management

Assurance Across Life
Cycles

Risk Management

Assurance Assessment

Assurance Management

SystemSecurity
Assurance

SystemFunctionality
Assurance

SystemOperational
Assurance

MSwA2010Sources

(Appendix B)

MSwA2010

Conceptual Categories

SDLCPractices

MSwA2010Project

Guidelines (Section 3)

MSwA2010BoK

(Section 7)

Assurance Across Life
Cycles

Risk Management

Assurance Assessment

Assurance Management

SystemSecurity
Assurance

SystemFunctionality
Assurance

SystemOperational
Assurance

MSwA2010Outcomes

(Section 4)

External

Questionnaires

(Appendix C)

15 | CMU/SEI-2010-TR-005

In the next section, we present MSwA2010 project guidelines that we used to establish the

foundation, scope, and boundaries for project activities and decision making.

16 | CMU/SEI-2010-TR-005

3 Guidelines for Developing This Curriculum

Our first task was to develop guidelines that we would follow for the MSwA2010 curriculum

project. The guidance from the GSwE2009 document, with some modifications, served our

purpose.

We adapted the first half of the guidelines to describe general characteristics of the MSwA2010

curriculum development process.

1. For purposes of this report, we define software assurance as

Application of technologies and processes to achieve a required level of confidence
7
 that

software systems and services function in the intended manner, are free from accidental or

intentional vulnerabilities, provide security capabilities appropriate to the threat

environment, and recover from intrusions and failures. (Refer to Section 2 for a detailed

discussion of this definition.)

2. The principal purpose of the MSwA2010 project will be to provide a set of customizable

recommendations for developing and improving curricula that provide software assurance

education at the master‘s degree level. Although it is not intended to be the basis for

accreditation (or certification), it may be useful as a reference for curriculum assessment.

3. The master‘s degree described by the MSwA2010 project will be a professional degree

targeting software assurance practitioners. With modification, MSwA2010 may serve as the

foundation for those with a research interest who ultimately seek a doctoral degree; however,

MSwA2010 is designed specifically to support professional degrees.

4. A master‘s program that satisfies MSwA2010 should require about as many credits as typical

U.S. programs do now.8

5. Software assurance draws its foundations from a wide variety of disciplines.

6. All software assurance students must learn to integrate theory and practice.

7. The rapid evolution and the professional nature of software assurance require an ongoing

review and revision of the corresponding curriculum.

The second half of the guidelines is more prescriptive and tactical.

7
 In the CNSS definition, the use of the word ―confidence‖ implies that there is a basis for the belief that software

systems and services function in the intended manner.

8
 There is a difference between U.S. and other educational systems in assigning credits. Typically, a U.S.

program requires a certain number of credits for graduation, awarded by taking courses, each of which has an
associated number of credits. Historically, the number of credits per course has often aligned with the number
of hours of lecture per week, but with online and other non-traditional formats becoming increasingly popular,
the rules for assigning credits to a class have become more varied. In Europe, the European Credit Transfer
and Accumulation System (ECTS) is a credit system introduced in 1989 that has been successfully tested and
used across Europe. ECTS is based on the student workload required to achieve the objectives of a program,
objectives preferably specified in terms of the learning outcomes and competences to be acquired. ECTS was
set up initially for credit transfer. The system facilitated the recognition of periods of study abroad and thus
enhanced the quality and volume of student mobility in Europe. Recently ECTS is developing into an
accumulation system to be implemented at institutional, regional, national, and European levels.

17 | CMU/SEI-2010-TR-005

8. MSwA2010 will be sensitive to the fact that there will be changes in technologies, practices,

applications, and new developments in pedagogy and will stress the importance of lifelong

learning, even though we are not able to anticipate these changes in this initial report.

9. MSwA2010 will identify the fundamental skills and knowledge that all graduates of an SwA

master‘s degree program should possess.

10. MSwA2010 will be based on a flexible curriculum architecture and on recognized bodies of

knowledge, such as the Software Engineering Body of Knowledge (SWEBOK) [IEEE-CS

2004c] and the Software Assurance Common Body of Knowledge (SwACBK) [DHS

2010b]. Other recognized bodies of knowledge that are referenced include the GSwE2009,

the earlier MSE model curricula [Ardis 1989, Ford 1991], and other relevant documents.

11. MSwA2010 will honor individual program and student flexibility by limiting the common

knowledge required for all students to no more than 50 percent of the total knowledge taught

in a master‘s program.

12. MSwA2010 will include exposure to nontechnical aspects of professional practice as an

integral component of the graduate curriculum, such as ethics and teamwork.

13. MSwA2010 will include discussions of strategies and tactics for implementation of the

curriculum, along with high-level recommendations.

14. MSwA2010 will identify expected knowledge and experience for students to enter a master‘s

program in software assurance (refer to Section 5).

These project guidelines significantly influenced the development of curriculum outcomes

described in the next section. In addition, the outcomes were influenced by the GSwE2009 and

responses to our external questionnaire (Section 2, Step 5). Outcomes were essentially a

refinement and evolution of the SDLC practices and categories (Section 2, Step 4) and represent

the essence of what should be expected from a graduate of an MSwA2010 program.

18 | CMU/SEI-2010-TR-005

4 Proposed Outcomes When a Student Graduates

The outcomes described in this section specify the knowledge, skills, and capabilities that

graduates of an MSwA program should have when they complete the program. The outcomes

represent the minimum capabilities that should be expected of a professional in the area of

software assurance when they complete an MSwA program.

The primary audience for the MSwA2010 project, the graduate faculty, should be prepared to

teach courses that achieve these outcomes. Software development and acquisition employers

responsible for staffing software assurance positions and developing increased software assurance

capabilities of their current employees should expect that graduates of an MSwA program be

proficient in capabilities described in these outcomes. The outcomes also provide a model for

curriculum content, organization, and support to those who assess software assurance programs.

The outcomes can be grouped in two main areas: (1) assurance process and management and

(2) assurance product and technology.

Assurance Process and Management

Outcome 1. Assurance Across Life Cycles

Brief description

Graduates will have the ability to incorporate assurance technologies and methods into life-cycle

processes and development models for new or evolutionary system development, and for system

or service acquisition.

Detailed description

Threats, attacks, and vulnerabilities must be considered whether a software system or component

is developed from inception, obtained through reuse or acquisition, modified through

maintenance, or replaced with new versions. To specify, design, build, acquire, deploy, and

operate software that minimizes vulnerabilities and isolates or limits the effects of threats and

attacks, software security activities and practices must be integrated throughout the software life-

cycle process and adapted to current software engineering practices and methodologies.

Program graduates will understand and be able to judge which software security methods,

techniques, and tools are needed in the development phases of requirements analysis and

specification, architectural and component design, unit implementation, assembly and integration,

and review, testing, and evaluation. Graduates will be able to assess security concerns and

determine appropriate processes and models to address such concerns in the

 development and deployment of software systems

 operational environment of software

 evolution of a software system

 acquisition of commercial and open-source software

 monitoring of ongoing security support services from software suppliers

19 | CMU/SEI-2010-TR-005

Graduates will be able to define security requirements in situations where the software itself is not

available for analysis. They will also be able to monitor and assess the security performance of

services in operational use.

Outcome 2. Risk Management
9

Brief description

Graduates will have the ability to perform risk analysis and tradeoff assessment, and to prioritize

security measures.

Detailed description

A software security risk exists when a particular threat can exploit a vulnerability that can have

harmful effects in a system. Such risks must be managed in order to ensure that software is

resilient and resistant to threats.

Graduates of this program will have knowledge of and experience with using software security

risk management techniques, methods, and practices. They will be able to perform risk

assessment by analyzing, identifying, and modeling potential threats and vulnerabilities and

ranking them according to the likelihood of exploitation and to severity and magnitude of impact.

Graduates will be able to perform cost-benefit analysis within project constraints to assure correct

software system functionality, achieve assurance objectives, and assess the possible presence of

malicious content or corrupted functions.

Graduates will be able to identify and analyze the changes to software requirements and software

design, code, deployment, and operational procedures that are needed to eliminate vulnerabilities

and mitigate threats. They will be able to estimate the costs of such changes and the costs of the

impact of the associated risks, and perform a tradeoff analysis to guide the selection of security

technologies and methods to manage and mitigate risks.

Outcome 3. Assurance Assessment

Brief description

Graduates will have the ability to analyze and validate the effectiveness of assurance operations

and create auditable evidence of security measures.

Detailed description

To analyze the effectiveness of assurance technologies and methods, graduates will be able to

answer the following questions:

1. How do I establish and specify the required or desired level of assurance for a specific

software application, set of applications, or a software-intensive system?

2. How do I measure, at each phase of the development or acquisition life cycle, that the

required or desired level of assurance has been achieved?

9
 This refers to system or software risk management, not organizational risk management.

20 | CMU/SEI-2010-TR-005

In response to the first question, graduates will be able to define and develop a baseline against

which software assurance can be measured. Methods may include

 verifying and validating that security requirements have been satisfied throughout the SDLC

(refer to Outcome 1)

 using a range of risk analysis approaches, including being able to prioritize software

components and systems based on their contribution to mission success (higher priority

components require greater levels of assurance) (refer to Outcome 2)

 developing and using auditable assurance evidence throughout the SDLC (refer to

Outcome 6)

Regarding the second question, graduates will be able to define and develop key product

measurements, process measurements, and other performance indicators that can be used to

validate the required level of software assurance appropriate to a given life-cycle phase. Graduates

will be able to articulate and use a software assurance measurement process and framework that

can be tailored for a specific development project.

Graduates will be able to define a required level of assurance for all life-cycle phases of an in-

class development project and present measurements that demonstrate whether the required level

has been satisfactorily achieved.

Outcome 4. Assurance Management

Brief description

Graduates will have the ability to make a business case for software assurance, lead assurance

efforts, understand standards, comply with regulations, plan for business continuity, and keep

current in security technologies.

Detailed description

Graduates will be able to communicate compelling business and technical arguments on the value

of software assurance to executives, project managers, and peers to catalyze adoption of assurance

practices. To make the business case for software assurance, graduates will be able to formulate

and present economic and other arguments that describe the need for software assurance and the

impact if software assurance is not addressed during software development and acquisition.

Arguments may include compliance with legal, regulatory, and standards-based requirements;

ensuring continuity of operations; cost-benefit models; risk impact; cost and loss avoidance; and

methods and analytical tools for return on investment.

In developing such arguments, graduates will be able to determine if development and operations

life-cycle costs for incorporating a required level of software assurance are consistent with

business needs. Graduates will be able to demonstrate that the required investment in cost, staff

resources, schedule, and other forms of investment are commensurate with the value of the

software and system.

Graduates will understand how to lead software and system assurance efforts (as an extension of

program and project management skills). Graduates will also understand the importance of

staying current with changing and emerging security trends, technologies, and methods.

21 | CMU/SEI-2010-TR-005

Assurance Product and Technology

Outcome 5. System Security Assurance

Brief description

Graduates will have the ability to incorporate effective security technologies and methods into

new and existing systems.

Detailed description

Graduates will be able to understand the concepts and operations of new and existing diverse

systems.
10

 They will be able to identify the threats caused by both malicious acts and accidental

events such as failures related to COTS and open-source proliferation, internet connectivity, and

the wireless web. Critical infrastructure industrial systems, like energy systems, should be an

important target for assurance activities.

Graduates will understand the process of implementing cybersecurity into new and existing

systems (including availability, integrity, privacy, confidentiality, and non-repudiation) using

identification, authorization, and authentication concepts. They will understand how to participate

in the development and acquisition of diverse systems that have appropriate security capabilities.

Graduates will be familiar with appropriate countermeasures, such as network defense of

industrial control systems in the areas of

 design and planning—for example, layers, access control, privileges

 technology—for example, firewalls, intrusion detection, virus control, encryption

 people and policies—for example, procedures, standards, documentation, training, audits,

checklists

 physical and personnel security—for example, gates, locks, guards, ID cards

Graduates will acquire the ability to think like an attacker in evaluating threat environments,

system vulnerabilities, and security properties. In becoming familiar with secure coding methods

and templates to use in new system development, they will be able to assess systems for the

presence of vulnerabilities and provide coding solutions to minimize or eliminate them.

To analyze the threat environment, graduates must be able to understand and duplicate the

techniques that have been used by attackers to interfere with an application‘s or a system‘s

operations.

Graduates will understand how to execute a variety of attacks, including password cracking,

escalation of privileges, denial-of-service, and the creation, distribution, and insertion of viruses,

worms, Trojans, spyware, and logic bombs. Attacks also include those that take advantage of

buffer overflows, cross-site scripting, SQL injections, IP and server spoofing, and session

hijacking. Graduates must learn about these techniques and agree that they will not use these

techniques for the purpose of attacking others. Of course, in the classroom, there is no way to

prevent unethical behavior, but we attempt to address this issue in the curriculum (see Outcome

10

 See the Glossary for a definition of diverse systems.

22 | CMU/SEI-2010-TR-005

5.3 in Section 7). Graduates will also be able to determine which of these methods an attacker is

most likely to use to accomplish specific objectives.

Outcome 6. System Functionality Assurance

Brief description

Graduates will have the ability to verify new and existing software system functionality for

conformance to requirements and to help reveal malicious content.

Detailed description

Graduates will have the ability to assure developed and acquired system and service security and

functionality. They will gain expertise in developing and assessing requirements, specifications,

designs, and implementations; performing verification and testing; and analyzing existing systems

through reverse engineering techniques.

 analyzing and evaluating development processes, environments, and technologies

 evaluating requirements for completeness and correctness

 applying rigorous methods for software specification, design, implementation, correctness

verification, and testing

 applying software quality and process engineering methods

 structuring unstructured software for improved understanding and analysis

 reverse engineering software to determine functional behavior and reveal vulnerabilities or

malicious content

 using automated tools to analyze software properties

 developing auditable assurance evidence

 analyzing the assurance of open source, COTS, and government, off-the-shelf (GOTS)

software

 analyzing test and evaluation processes for assuring software systems

 defining assurance requirements across supply chains and assurance assessment of acquired

software (refer to Outcome 3)

 creating service agreements that define required functionality and levels of service from

providers

Outcome 7. System Operational Assurance

Brief description

Graduates will have the ability to monitor and assess system operational security and respond to

new threats.

Detailed description

For all classes of software and systems (new, existing, acquired, diverse, etc.), it is essential for

graduates to be able to monitor and assess if software and systems are operating securely and

functioning as intended (see also Outcomes 3 and 6). Software and systems need to resist, respond

to, and recover from threats and attacks that were considered during development (for new

23 | CMU/SEI-2010-TR-005

systems) and evaluated (for other classes of systems) before being placed into an operational

environment. Graduates must demonstrate this same ability for new threats and be able to identify

corresponding shortfalls in security function and performance and identification of relevant

countermeasures to address these shortfalls. Monitoring and assessing system operational security

includes identifying vulnerabilities and other issues that could have been addressed earlier in the

development or acquisition life cycle and ensuring that those issues are submitted as potential

process improvements.

Specific capabilities include

 implementing system, service, and personnel monitors and controls

 monitoring and controlling system and service operations for security and correct

functionality

 developing procedures and training for system users and system administrators

 performing analysis of malware and developing countermeasures

 effectively responding to accidents, failures, and intrusions

 assuring business survivability and operational continuity

 acquiring systems and services with appropriate security capabilities

 defining capabilities and limitations and applying operational monitoring automation

Graduates will be able to use a range of technologies and methods to monitor and assess

operational software and systems to determine that they continue to meet their security

requirements, perform as expected, and continue to provide critical services in the face of known

and new threats. Several of these technologies and methods are described in Outcomes 3 and 6.

The next section describes required and desired prerequisite knowledge and skills that students of

an MSwA program should have mastered prior to starting this curriculum. Gaps in satisfying

prerequisites may put new students at a disadvantage, perhaps requiring remedial work for

successful completion. Faculty members offering this curriculum should be prepared to deal with

students‘ knowledge and skill gaps and offer possible solutions.

24 | CMU/SEI-2010-TR-005

5 Background Expected of Students Entering the Program

(Prerequisites)

As with all scientific and engineering disciplines, appropriate prerequisite knowledge and skills

are essential for successful graduate-level education in software assurance. Because an MSwA

program is an extension and specialization of undergraduate education, it is important to define

required foundations upon which to build professional capabilities. This report defines

prerequisite foundations from a security perspective, leaving areas such as reliability and safety

for other analyses. Some of these foundations are necessarily general in nature; others are more

specific to security aspects of software assurance. Because of the technical nature of software

assurance, we anticipate that entrants to a program based on MSwA2010 will hold undergraduate

degrees in disciplines such as computer science; software engineering; electrical, electronic, and

computer engineering; mathematics; or information systems. We expect that prerequisites will be

satisfied through some combination of undergraduate courses, work experience, and possibly

remedial education prior to the start of an MSwA program.

The following prerequisites are organized into three categories: computing foundations, software

engineering, and security engineering. While satisfying substantially all prerequisites is an ideal

goal, it is expected as a practical matter that candidates will satisfy the majority of the computing

foundations prerequisites, plus elements of either the software engineering or security engineering

prerequisites. Candidates who have been in the workforce for a while may have work experience

that satisfies the prerequisites rather than formal coursework. Alternatively the university may use

exams to allow a candidate to ―test out‖ of a prerequisite. In some areas there may be certification

programs, such as the IEEE Certified Software Development Professional (CSDP) program
11

 that

can be substituted for coursework. To help set expectations, these prerequisites are defined in

terms of the following Bloom cognitive levels, which are described in Appendix A:

 knowledge (K)

 comprehension (C)

 application (AP)

 analysis (AN)

Computing Foundations

Discrete Mathematics

Justification

 The ability to work with discrete mathematics provides the foundation for key software

assurance technologies and methods taught in an MSwA program.

Prerequisites

 sets, functions, and relations; graphs and trees; propositional and predicate logic; number

systems; modular arithmetic; proof techniques (Bloom Level C)

11

 See http://www.computer.org/portal/web/certification/csdp for more information.

http://www.computer.org/portal/web/certification/csdp

25 | CMU/SEI-2010-TR-005

 fundamentals of probability and statistics (Bloom Level C)

Source

 undergraduate discrete mathematics, probability, and statistics courses
12

Computer Fundamentals

Justification

 Understanding computer hardware organization provides a foundation for implementation-

level assurance technologies and methods taught in an MSwA program.

Prerequisites

 computer hardware function and organization, assembly and microcode organization,

memory organization and access, communication interfaces, multiprocessing (Bloom

Level C)

Source

 undergraduate introduction to computing and computer architecture courses

Networks and Communications

Justification

 Understanding network architectures provides a foundation for technologies and methods of

assurance for distributed computing and large-scale systems taught in an MSwA program.

Prerequisites

 network-centric computing and communication, network topologies and protocols,

addressing and routing (Bloom Level C)

 web applications and multimedia, wireless and mobile computing (Bloom Level C)

 network configuration, monitoring, performance, and management (Bloom Level C)

Source

 undergraduate networking and communication course

Programming Environments

Justification

 The ability to work with programming environments provides a foundation for

implementation-level assurance technologies and methods taught in an MSwA program.

Prerequisites

 operating systems, including scheduling, memory management, concurrency, security, file

system, and device management (Bloom Level C)

 real-time and embedded system concepts (Bloom Level C)

12

 Note that candidates who have been in the workforce for a while may not have this background. They should be
able to acquire the background through self-study or in the MSwA program itself.

26 | CMU/SEI-2010-TR-005

 implementation environments, including programming languages, compilers, assemblers,

loaders, and libraries (Bloom Level C)

 support tools for analysis of programs and systems (Bloom Level C)

Source

 undergraduate operating system and programming courses
13

Program Development

Justification

 The ability to write programs using contemporary languages is a fundamental skill for many

subject areas taught in an MSwA program.

Prerequisites

 object-oriented programming using a language such as Java or C++ (Bloom Level AP)

 input/output streams and process threads, pointers, memory allocation and deallocation

(Bloom Level AP)

 fundamental data structures including arrays, lists, queues, and stacks (Bloom Level AP)

 analysis and implementation of basic algorithms (Bloom Level AP)

 semantic foundations of programming languages (Bloom Level K)

Source

 undergraduate programming
14

 and fundamentals of algorithms courses

Software Engineering

Software Development Life Cycle

Justification

 Understanding life-cycle stages provides a framework for application of assurance

technologies and methods taught in an MSwA program.

Prerequisites

 requirements elicitation, analysis, and validation; use case and flow analysis; system and

software specification; architecture, design, and implementation; verification, inspection, and

testing; and evolution (Bloom Level C)

 software quality, dependability, and reliability (Bloom Level C)

 project management concepts, including work breakdown, scheduling, budgeting, tracking,

and risk management (Bloom Level C)

 system development models, including incremental, spiral, and agile methods; project

management frameworks including the Capability Maturity Model Integration (CMMI
®15

)

framework (Bloom Level C)

13

 Note that programming experience may serve as a substitute for a programming course.

14
 Note that programming experience may serve as a substitute for a programming course.

15
 ® CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

27 | CMU/SEI-2010-TR-005

Source

 undergraduate software engineering and systems design courses

Software Analysis

Justification

 Awareness of software analysis methods provides a foundation for understanding

technologies for reverse engineering and analysis taught in an MSwA program.

Prerequisites

 software analysis tools and methods, including static and dynamic analyzers (Bloom

Level C)

 reverse engineering methods, including transformation of unstructured code into structured

form and analysis of program behavior (Bloom Level C)

Source

 undergraduate software engineering and systems analysis courses

Security Engineering

Security Issues

Justification

 Awareness of security issues and requirements is fundamental background for pursuit of an

MSwA degree.

Prerequisites

 knowledge of security threats from criminal, nation-state, and insider adversaries;

consequences of attacks on critical infrastructure, defense, and economic systems; security

risks and requirements for application domains such as finance, energy, and transportation

(Bloom Level C)

 security issues in computing trends, including global networks, systems-of-systems, open-

source, cloud computing, cross-site scripting, web security, and social networking (Bloom

Level C)

 security properties, including privacy, confidentiality, authentication, authorization,

availability, integrity, and non-repudiation (Bloom Level C)

 security aspects of human behavior in interacting with software systems (Bloom Level C)

Source

 undergraduate computer security course

The next section presents candidate architectures and course packages that can be used to organize

the MSwA2010 BoK to achieve the outcomes described in Section 4. The architecture provides

for preparatory content, core course content, elective content, and a capstone experience through

which students can demonstrate their understanding and ability to apply what they have learned.

28 | CMU/SEI-2010-TR-005

6 MSwA2010 Curriculum Architecture

This section describes a curriculum architecture and course packages that can be used to organize

and package the body of knowledge that makes up the MSwA2010 curriculum. Using the

MSwA2010 BoK, the architecture in this section identifies the minimum content that all degree

programs should include. The curriculum architecture is similar to the one proposed in the

GSwE2009 and is compatible with software engineering master‘s programs that are based on that

curriculum. It is intended to provide a structural basis for programs that deliver the outcomes

described in Section 4.

MSwA Degree Program

The curriculum architecture includes preparatory material, core materials, elective materials, and a

capstone experience.

Figure 3: Architecture of an MSwA Degree Program

Figure 3 provides an overview of the MSwA2010 degree program curriculum architecture. The

Preparatory Materials represent the prerequisites described in Section 5.This material should be

mastered by students before entering the master‘s program. The MSwA Core material and

everything below it is mastered after program entry. Individual programs will determine how to

prepare students whose background falls short. Typically, colleges and universities that wish to

admit students who lack the expected background will provide preparatory courses that those

29 | CMU/SEI-2010-TR-005

students should take before entering the master‘s program. The more deficient the students‘

backgrounds are relative to the prerequisites, the higher the risk that students will not perform

satisfactorily, harming themselves and fellow students.

The MSwA Core includes the fundamental skills and knowledge all MSwA graduates should

have; these skills are detailed in the MSwA BoK (refer to Section 7). Where appropriate, the

MSwA Core emphasizes the guidelines used to define the MSwA2010 BoK, including its

dependencies on other related disciplines, such as software engineering, testing, and project

management; all graduate programs should include this material. Courses that teach core content

are mandatory.

Electives accommodate individual students‘ interests and may cover unique requirements of a

program or institution. Students may take electives to gain more depth in a core area (for example,

assurance assessment) or to extend and broaden their knowledge in a particular application

domain (for example, application to a particular market sector). Because software assurance is a

relatively new academic field, it is likely that special topics courses and seminars will be included

among the electives.

The MSwA2010 project recommends that students demonstrate their accumulated skills and

knowledge in a capstone experience, which engages the student in a realistic team project

emphasizing software assurance concepts and practices. The capstone experience would likely be

between three and six semester credit hours, which would count toward the total credit hours

typically required for a master‘s degree. In this context, a capstone project would ideally be a

practical software assurance undertaking, using best software assurance practices and tools with a

real customer that has actual software assurance objectives. Students completing the curriculum

must be able to understand and appreciate the skills needed to produce assured software in a

typical software development environment. These topics should be integrated into the core

materials and perhaps could be reinforced in the elective materials. However, the presence of a

capstone project is of considerable importance, as it offers students the opportunity to tackle a

major project that is likely to be more comprehensive in gaining realistic software assurance

experience than their prior projects.

This architecture does not imply that there are courses with names corresponding to the

curriculum knowledge areas. Sample course descriptions are provided in Appendix F, but the

architecture is intended to be independent of actual course composition. Figure 4 provides an

example of typical course packaging. In this example, Courses 1 and 2 include only core material

or elective material, respectively, whereas Course 3 covers a combination of core and elective

materials. This architecture also does not imply specific course sequencing. Courses containing

preparatory or core materials need not be completed before coursework in the next row can begin.

Sequencing of courses should be tailored to a specific institution‘s curriculum.

30 | CMU/SEI-2010-TR-005

Figure 4: Course Alignment Across MSwA Core and Electives

MSE Degree Program with Software Assurance Track

Figure 5 illustrates a complete program that includes Preparatory Materials, the GSwE Core, the

MSwA Core, and the Capstone Experience. Note that Software Quality in the GSwE Core is

defined as the capability of a software product to satisfy stated and implied needs when used

under specified conditions. Graduates of such a program would have a Master of Software

Engineering with a Software Assurance specialization that includes the entire MSwA core. Note

that the items in the right column correspond to knowledge areas, not courses, so the number of

items listed under GSwE core and MSwA core is not related to specific courses or credit hours in

these areas. As shown, such a program would leave little or no room for electives.

31 | CMU/SEI-2010-TR-005

 Figure 5: MSE with SwA Specialization

The MSwA2010 curriculum architecture provides the organizing structure for the core BoK in the

next section. The core BoK derives from all work described up to this point in this report, as

shown in Figure 1 and Figure 2. The BoK is structured to aid faculty members in selecting and

developing course content that fits with their programs and meets their objectives. The BoK

directly supports the achievement of the outcomes described in Section 4 and will provide

graduates with fundamental knowledge, skills, and capabilities in software assurance.

32 | CMU/SEI-2010-TR-005

7 Core Body of Knowledge

This section describes the MSwA2010 BoK, the core body of knowledge for an MSwA degree.

The term software assurance used in this section is the expanded definition in Section 2 of this

report. The MSwA2010 BoK includes software assurance practices that are required to support

the MSwA2010 outcomes. All software assurance professionals must know these practices to

perform their jobs effectively. The MSwA2010 BoK is structured into seven knowledge areas,

with each knowledge area subdivided into a set of knowledge units.

The MSwA2010 BoK does not provide detailed descriptions but rather serves as a guide to the

body of knowledge by referencing literature that explains and elaborates on the elements (see

Appendix B).

The following knowledge areas are defined in terms of the Bloom cognitive levels, which are

described in Appendix A. Brief descriptions of the outcomes are included for each knowledge

area. For detailed descriptions of the outcomes, refer to Section 4.

1. Assurance Across Life Cycles

Outcome: Graduates will have the ability to incorporate assurance technologies and methods into

life-cycle processes and development models for new or evolutionary system development, and

for system or service acquisition.

1.1. Software Life-Cycle Processes

1.1.1. New development (Bloom Level C)

Processes associated with the full development of a software system

1.1.2. Integration, assembly, and deployment (Bloom Level C)

Processes concerned with the final phases of the development of a new or

modified software system

1.1.3. Operation and evolution (Bloom Level C)

Processes that guide the operation of the software product and its change over

time

1.1.4. Acquisition, supply, and service (Bloom Level C)

Processes that support acquisition, supply, or service of a software system

1.2. Software Assurance Processes and Practices

1.2.1. Process and practice assessment (Bloom Level AP)

Methods, procedures, and tools used to assess assurance processes and

practices

1.2.2. Software assurance integration into SDLC phases (Bloom Level AP)

Integration of assurance practices into typical life-cycle phases (for example,

requirements engineering, architecture and design, coding, test, evolution,

acquisition, and retirement)

33 | CMU/SEI-2010-TR-005

2. Risk Management

Outcome: Graduates will have the ability to perform risk analysis and tradeoff assessment, and to

prioritize security measures.

2.1. Risk Management Concepts

2.1.1. Types and classification (Bloom Level C)

Different classes of risks (for example, business, project, technical)

2.1.2. Probability, impact, severity (Bloom Level C)

Basic elements of risk analysis

2.1.3. Models, processes, metrics (Bloom Level C)

Models, process, and metrics used in risk management

2.2. Risk Management Process

2.2.1. Identification (Bloom Level AP)

Identification and classification of risks associated with a project

2.2.2. Analysis (Bloom Level AP)

Analysis of the likelihood, impact, and severity of each identified risk

2.2.3. Planning (Bloom Level AP)

Risk management plan covering risk avoidance and mitigation

2.2.4. Monitoring and management (Bloom Level AP)

Assessment and monitoring of risk occurrence and management of risk

mitigation

2.3. Software Assurance Risk Management

2.3.1. Vulnerability and threat identification (Bloom Level AP)

Application of risk analysis techniques to vulnerability and threat risks

2.3.2. Analysis of software assurance risks (Bloom Level AP)

Analysis of risks for both new and existing systems

2.3.3. Software assurance risk mitigation (Bloom Level AP)

Plan for and mitigation of software assurance risks

2.3.4. Assessment of Software Assurance Processes and Practices (Bloom Level AP)

As part of risk avoidance and mitigation, assessment of the identification and

use of appropriate software assurance processes and practices

3. Assurance Assessment

Outcome: Graduates will have the ability to analyze and validate the effectiveness of assurance

operations and create auditable evidence of security measures.

3.1. Assurance Assessment Concepts

3.1.1. Baseline level of assurance; allowable tolerances, if quantitative (Bloom Level

AP)

34 | CMU/SEI-2010-TR-005

Establishment and specification of the required or desired level of assurance

for a specific software application, set of applications, or software-reliant

system (and tolerance for same)

3.1.2. Assessment methods (Bloom Level C)

Knowledge of how various methods (such as validation of security

requirements, risk analysis, threat analysis, vulnerability assessments and

scans, and assurance evidence) can be used to determine if the software/system

being assessed is sufficiently secure within tolerances

3.2. Measurement for Assessing Assurance

3.2.1. Product and process measures by life-cycle phase (Bloom Level AP)

Definition and development of key product and process measurements that can

be used to validate the required level of software assurance appropriate to a

given life-cycle phase

3.2.2. Other performance indicators that test for the baseline as defined in 3.1.1., by life-

cycle phase (Bloom Level AP)

Definition and development of additional performance indicators that can be

used to validate the required level of software assurance appropriate to a given

life-cycle phase

3.2.3. Measurement processes and frameworks (Bloom Level C)

Knowledge of the range of software assurance measurement processes and

frameworks and how these might be used to accomplish software assurance

integration into SDLC phases

3.2.4. Business survivability and operational continuity (Bloom Level AP)

Definition and development of performance indicators that can specifically

address the software/system‘s ability to meet business survivability and

operational continuity requirements, to the extent the software affects these

3.3. Assurance Assessment Process (collect and report measures that demonstrate the

baseline as defined in 3.1.1.)

3.3.1. Comparison of selected measurements to the established baseline (Bloom Level

AP)

Analysis of key product and process measures and performance indicators to

determine if they are within tolerance when compared to the defined baseline

3.3.2. Identification of out-of-tolerance variances (Bloom Level AP)

Identification of measures that are out of tolerance when compared to the

defined baselines and ability to develop actions to reduce the variance

4. Assurance Management

Outcome: Graduates will have the ability to make a business case for software assurance, lead

assurance efforts, understand standards, comply with regulations, plan for business continuity, and

keep current in security technologies.

4.1. Making the Business Case for Assurance

35 | CMU/SEI-2010-TR-005

4.1.1. Valuation and cost-benefit models, cost and loss avoidance, return on investment

(Bloom Level AP)

Application of financially based approaches, methods, models, and tools to

develop and communicate compelling cost-benefit arguments in support of

deploying software assurance practices

4.1.2. Risk analysis (Bloom Level C)

Knowledge of how risk analysis can be used to develop cost-benefit arguments

in support of deploying software assurance practices

4.1.3. Compliance justification (Bloom Level C)

Knowledge of how compliance with laws, regulations, standards, and policies

can be used to develop cost-benefit arguments in support of deploying

software assurance practices

4.1.4. Business impact/needs analysis (Bloom Level C)

Knowledge of how business impact and needs analysis can be used to develop

cost-benefit arguments in support of deploying software assurance practices,

specifically in support of business continuity and survivability

4.2. Managing Assurance

4.2.1. Project management across the life cycle (Bloom Level C)

Knowledge of how to lead software and system assurance efforts as an

extension of normal software development (and acquisition) project

management skills

4.2.2. Integration of other knowledge units (Bloom Level AN)

Identification, analysis, and selection of software assurance practices from any

knowledge units that are relevant for a specific software development or

acquisition project

4.3. Compliance Considerations for Assurance

4.3.1. Laws and regulations (Bloom Level C)

Knowledge of the extent to which selected laws and regulations are relevant

for a specific software development or acquisition project, and how

compliance might be demonstrated

4.3.2. Standards (Bloom Level C)

Knowledge of the extent to which selected standards are relevant for a specific

software development or acquisition project, and how compliance might be

demonstrated

4.3.3. Policies (Bloom Level C)

Knowledge of how to develop, deploy, and use organizational policies to

accelerate the adoption of software assurance practices, and how compliance

might be demonstrated

36 | CMU/SEI-2010-TR-005

5. System Security Assurance

Outcome: Graduates will have the ability to incorporate effective security technologies and

methods into new and existing systems.

5.1. For Newly Developed and Acquired Software for Diverse Systems

5.1.1. Security and safety aspects of computer-intensive critical infrastructure (Bloom

Level K)

Knowledge of safety and security risks associated with critical infrastructure

systems such as found, for example, in banking and finance, energy production

and distribution, telecommunications, and transportation systems

5.1.2. Potential attack methods (Bloom Level C)

Knowledge of the variety of methods by which attackers can damage software

or data associated with that software by exploiting weaknesses in the system

design or implementation

5.1.3. Analysis of threats to software (Bloom Level AP)

Analysis of the threats to which software is most likely to be vulnerable in

specific operating environments and domains

5.1.4. Methods of defense (Bloom Level AP)

Familiarity with appropriate countermeasures such as layers, access controls,

privileges, intrusion detection, encryption, and code review checklists

5.2. For Diverse Operational (Existing) Systems

5.2.1. Historic and potential operational attack methods (Bloom Level C)

Knowledge of and ability to duplicate the attacks that have been used to

interfere with an application‘s or system‘s operations

5.2.2. Analysis of threats to operational environments (Bloom Level AN)

Analysis of the threats to which software is most likely to be vulnerable in

specific operating environments and domains

5.2.3. Design of and plan for access control, privileges, and authentication (Bloom Level

AP)

Design of and plan for access control and authentication

5.2.4. Security methods for physical and personnel environments (Bloom Level AP)

Knowledge of how physical access restrictions, guards, background checks,

and personnel monitoring can address risks

5.3. Ethics and Integrity in Creation, Acquisition, and Operation of Software Systems

5.3.1. Overview of ethics, code of ethics, and legal constraints (Bloom Level C)

Knowledge of how people who are knowledgeable about attack and prevention

methods are obligated to use their abilities, both legally and ethically,

referencing the Software Engineering Code of Ethical and Professional

Conduct [ACM 2009]

5.3.2. Computer attack case studies (Bloom Level C)

37 | CMU/SEI-2010-TR-005

Knowledge of the legal and ethical considerations involved in analyzing a

variety of historical events and investigations

6. System Functionality Assurance

Outcome: Graduates will have the ability to verify new and existing software system functionality

for conformance to requirements and to help reveal malicious content.

6.1. Assurance Technology

6.1.1. Technology evaluation (Bloom Level AN)

Evaluation of capabilities and limitations of technical environments,

languages, and tools with respect to creating assured software functionality

and security

6.1.2. Technology improvement (Bloom Level AP)

Recommendation of improvements in technology as necessary within project

constraints

6.2. Assured Software Development

6.2.1. Development methods (Bloom Level AP)

Rigorous methods for system requirements, specification, architecture, design,

implementation, verification, and testing to develop assured software

6.2.2. Quality attributes (Bloom Level C)

Software quality attributes and how to achieve them

6.2.3. Maintenance methods (Bloom Level AP)

Assurance aspects of software maintenance and evolution

6.3. Assured Software Analytics

6.3.1. Systems analysis (Bloom Level AP)

Analysis of system architectures, networks, and databases for assurance

properties

6.3.2. Structural analysis (Bloom Level AP)

Structuring the logic of existing software to improve understandability and

modifiability

6.3.3. Functional analysis (Bloom Level AP)

Reverse engineering of existing software to determine functionality and

security properties

6.3.4. Analysis of methods and tools (Bloom Level C)

Capabilities and limitations of methods and tools for software analysis

6.3.5. Testing for assurance (Bloom Level AN)

Evaluation of testing methods, plans, and results for assuring software

6.3.6. Assurance evidence (Bloom Level AP)

Development of auditable assurance evidence

38 | CMU/SEI-2010-TR-005

6.4. Assurance in Acquisition

6.4.1. Assurance of acquired software (Bloom Level AP)

Assurance of software acquired through supply chains,
16

 vendors, and open

sources, including developing requirements and assuring delivered

functionality and security

6.4.2. Assurance of software services (Bloom Level AP)

Development of service level agreements for functionality and security with

service providers and for monitoring compliance

7. System Operational Assurance

Outcome: Graduates will have the ability to monitor and assess system operational security and

respond to new threats.

7.1. Operational Procedures

7.1.1. Business objectives (Bloom Level C)

Role of business objectives and strategic planning in system assurance

7.1.2. Assurance procedures (Bloom Level AP)

Creation of security policies and procedures for system operations

7.1.3. Assurance training (Bloom Level K)

Selection of training for users and system administrative personnel in secure

system operations

7.2. Operational Monitoring

7.2.1. Monitoring technology (Bloom Level C)

Capabilities and limitations of monitoring technologies, and installation and

configuration or acquisition of monitors and controls for systems, services, and

personnel

7.2.2. Operational evaluation (Bloom Level AP)

Evaluation of operational monitoring results with respect to system and service

functionality and security

7.2.3. Operational maintenance (Bloom Level AP)

Maintenance and evolution of operational systems while preserving assured

functionality and security

7.2.4. Malware analysis (Bloom Level AP)

Evaluation of malicious content and application of countermeasures

7.3. System Control

7.3.1. Responses to adverse events (Bloom Level AN)

Plan for and execution of effective responses to operational system accidents,

failures, and intrusions

16

 For more information about software security supply chain risk, download the SEI report Evaluating and
Mitigating Software Supply Chain Security Risks [Ellison 2010].

39 | CMU/SEI-2010-TR-005

7.3.2. Business survivability (Bloom Level AP)

Maintenance of business survivability and continuity of operations in adverse

environments (see also Knowledge Unit 3, Assurance Assessment)

Having a defined set of student prerequisites, established outcomes, a core body of knowledge,

and curriculum architecture is necessary but not sufficient. Often the most challenging part of

putting a new program or a new track in place is implementation. The next section provides

guidelines and recommendations for faculty members to consider when considering starting an

MSwA program.

40 | CMU/SEI-2010-TR-005

8 Implementation Guidelines

Issues to Address when Implementing a Graduate Software Assurance Program

There are several issues to consider when implementing any new academic program. In addition,

software assurance programs have a few special challenges that need to be addressed. The main

categories of issues are

 planning and launching a new program

 recruiting and preparing students

 finding and training faculty

 acquiring resources

 designing capstone courses

Planning and Launching a New Program

A prerequisite for starting any successful program is a champion who will lead the effort. This

might be a faculty member, a department head, a dean, or another member of the academic

community dedicated to starting the program. In addition, it helps to have other champions from

industry and government who will support the program, perhaps by voicing support to others,

hiring graduates, or providing resources. If possible, it is advisable to form an industry advisory

board (IAB) early on to help support and shape the program.

The academic champion needs to make a convincing case for the program by preparing a business

plan, including a market study. The plan should be used to convince university colleagues and

administrators that there will be sufficient interest in the program and that graduates will be

successful in their career plans. Competing programs should be identified, some of which may be

on the same campus.

New programs need to be sold at several levels of campus administration and even at state levels

in some cases. For example, some states require extensive proposals for new academic programs,

including details about courses, faculty, and dedicated resources. It is often much easier to get

approval to create a new track within an existing program than it is to create a new program.

There are federal government assistance programs, such as the Federal Cyber Service Scholarship

for Service program that may help [OPM 2010]. These programs provide some financial

assistance to students and help justify the need for new academic programs. There are also federal

agencies (for example, the National Science Foundation and the Department of Education) that

provide start-up funds for innovative educational programs.

Recruiting and Preparing Students

If you build it, they may not come. Recruitment of students needs to be a continual process, with

effort expended every year to attract students to the program. A good market study that estimates

the number of expected new students to the institution and current students who may enroll in the

program should identify the likely areas from which to draw students. An IAB can help keep the

study up to date and provide some additional help in recruiting.

41 | CMU/SEI-2010-TR-005

Since some of the potential students are already in the workforce, it is helpful to establish

relationships with the human resources (HR) department of likely employers, including those that

regularly recruit students from your institution. HR departments administer benefits, such as

reimbursement for tuition, and often provide information to employees about educational

opportunities. It may be possible to give in-house presentations to local companies, arranged

through the HR department or a member of your IAB.

Local professional organizations may provide opportunities for student recruitment. Trade

organizations provide networking for local professionals and often have social events sponsored

by local companies. There are often opportunities to give a short presentation or set up a booth at

some of these meetings.

Most universities have professionals who help recruit students. These staff members need to be

informed about any new program and the types of students who fit best. Developing brochures

and a web presence helps to inform both internal staff and prospective students.

Some students may need help preparing for graduate study in software assurance. There are

usually two kinds of deficiencies to be addressed: knowledge deficiencies and experience

deficiencies. Knowledge deficiencies can be addressed by leveling courses, such as an overview

course on software and systems engineering, a survey course in current topics in software

engineering, or a survey course on security. Experience deficiencies can be partially overcome by

internships in industry and assistantships within the school. Special team projects in various

aspects of industrial practice can be offered for cohorts of students who lack sufficient experience

(for example, a project course on the use of software tools for software development and

evolution or a project course on procurement, integration, and testing of open source software

packages).

Finding and Training Faculty

There are often two sources of faculty to teach in new programs of this type: (1) faculty from

related areas who have knowledge and interest in teaching software assurance and (2) experienced

practitioners from industry who are interested in teaching. The former are often working in

computer science academic units, but they may be found in almost any discipline that uses

computing. Although they may have good teaching skills, they may need some help adjusting to

the professional nature of the program. Some students will have considerable experience and

expect to learn about the latest methods and tools, which is why staying current in the field is

important. Consulting is one good way to stay current.

The second type of faculty candidate (from industry) may need some help making the transition to

teaching. If they work part time as adjunct faculty, they will need to balance the demands of two

jobs. If they become full-time faculty, there may be some discomfort in taking a salary cut. In

either case it is important to ensure they appreciate the benefits of an academic position.

When PhD programs in software assurance are available, it may be possible to hire graduates of

those programs.

It is prudent to ramp up faculty at a pace consistent with the growth of the program. This means

that some part-time faculty will be needed early on before there is enough demand to justify

42 | CMU/SEI-2010-TR-005

hiring full-time faculty. Adjunct faculty from industry are often used as part-time faculty, but do

not forget to consider faculty from other academic units at your institution.

Acquiring Resources

Hardware and software may be provided by local companies or members of the IAB. In addition,

some vendors have academic alliance programs that provide hardware or software at deep

discounts. However, there should be an annual budget allocated to acquiring and maintaining

computing systems. A small program should be able to share support staff with other programs.

Designing Capstone Courses

Capstone courses in software assurance provide their own challenges. Fortunately there are

several models from which to choose. One issue to resolve early on is whether the capstone

course(s) will be integrated with other courses in the curriculum. Integrated capstones provide

connections to several other courses in the curriculum, offering opportunities for students to

practice skills they learn in those other courses. Stand-alone capstones are easier to implement

because they do not have to be synchronized with the content of other courses.

In order to provide a realistic setting for a capstone course, it is helpful to have real clients.

Finding clients is another recruiting activity to plan and implement each year. Another alternative

is to pursue open source projects. The community of open source developers can play the role of

clients, but they will usually not have the same level of commitment as a real client.

For more information about implementation considerations, consult the GSwE2009 FAQ

Discussion Forum.
17

 The Implementation/Execution forum
18

 specifically addresses important

issues for faculty members and institutions involved in implementing and executing a graduate

program in software engineering. Many of these issues will be the same for implementing an

MSwA degree program.

Ways in Which Industry Can Support Software Assurance Education

For degree programs targeted toward professionals, such as the MSwA, industry support is

essential. In addition to participating in industry advisory boards, making donations, or providing

discounts on equipment and software, there are a number of other ways in which industry can

contribute towards advancing this new discipline. These include

 encouraging employees to work with universities as adjunct faculty or guest lecturers. This

can enrich both the industry organization and the university program.

 sponsoring and speaking at faculty development workshops. It is important to provide

faculty development workshops for those who wish to teach a new discipline. However, the

cost of such workshops can be significant. Industry could assist with the cost, help to shape

the material, and provide guest speakers for such workshops.

17

 See http://www.gswe2009.org/faq/#cat5.

18
 See http://www.gswe2009.org/faq/?tx_mmforum_pi1[action]=list_topic&tx_mmforum_pi1[fid]=8.

http://www.gswe2009.org/faq/#cat5
http://www.gswe2009.org/faq/?tx_mmforum_pi1

43 | CMU/SEI-2010-TR-005

 providing grants to help develop new degree programs. Implementing new degree programs

is very expensive, and assistance with some of the development costs could help get a new

program off the ground.

 providing scholarships and summer internships to students in these programs. This is a good

way to ensure that graduates can hit the ground running once they complete their degree

program.

 providing support for realistic capstone projects. Industry could provide valuable support by

proposing capstone problems, acting as a client, reviewing deliverables, and/or furnishing

advice about project management, development methods, and technology.

 modifying and updating employee position descriptions to raise the bar. Many industry

position descriptions focus on low-level skills, such as the ability to code in C or Java, and

do not highlight more advanced skills needed to produce assured software, such as

background in risk analysis, attack patterns, threat modeling, and secure programming and

testing.

 creating an endowed chair position in software assurance. An endowed position would

ensure longevity for the program.

The work described in this report can serve as a solid foundation for developing a master‘s degree

program in software assurance. We close the report with concrete suggestions for moving

forward, including ensuring that members of the target audience are aware of this project through

broad-based and targeted communication, enabling MSwA2010 curriculum use and application,

ensuring that the MSwA2010 curriculum is accepted as a standard model for graduate software

assurance curriculum development, and making sure this content is regularly reviewed and

refreshed.

44 | CMU/SEI-2010-TR-005

9 Next Steps and Dissemination

This report is just the first step in the set of activities needed to support Master of Software

Assurance degree programs and tracks. In this section, we describe the additional activities that

are needed to support dissemination of the curriculum into the computing education community

and transition into actual degree programs and tracks.

In order for the MSwA2010 curriculum to be considered successful, the curriculum model must

be available, understood by the targeted academic and industrial communities, viewed as a key

reference for software assurance curriculum development, and actually used to develop and

modify software-assurance-focused curricula. In the following subsections, we discuss various

approaches for making this model available, understood, and used. The discussion might be

viewed as a plan for what follows the completion of this report; that is—What are the next steps?

The Computing Education Community Knows About MSwA2010

In 2010, one of the primary activities of the MSwA2010 project will be disseminating

MSwA2010 information. The following are some of the planned activities:

 Conduct tutorials and workshops and present information papers about MSwA2010 at

national and international computing and engineering education conferences and workshops.

Possible conferences include the Conference on Software Engineering Education and

Training, the Association for Computing Machinery (ACM) Technical Symposium on

Computer Science Education, The Colloquium for Information Systems Security Education,

the Frontiers in Education conference, and the European Association for Education in

Electrical and Information Engineering conference.

 Publish technical papers and articles about MSwA2010 in the journals, magazines, and

newsletters of professional organizations, government agencies, and research institutes.

Examples of such organizations include ACM, IEEE Computer Society (IEEE-CS),

American Society for Engineering Education (ASEE), SEI, DHS, and DoD.

 Post this report and general information about MSwA2010 on various websites such as at the

SEI and DHS. Communicate through various listservers, discussion boards, and webinars to

describe MSwA2010 features and provide forums for discussion.

MSwA2010 Is Used

A critical element of the MSwA2010 project is to enable educational institutions to use

MSwA2010. The previous section discusses a number of ideas that would advance this goal. The

following are some additional activities that would help a start-up program:

 identify programs and individuals likely to use MSwA2010 elements

 solicit current MSE programs to conduct a trial review of the MSwA2010 and provide

information and opinion about how MSwA2010 elements could be incorporated into their

curricula

45 | CMU/SEI-2010-TR-005

 conduct a multi-day workshop for faculty interested in using MSwA2010 to implement a

new MSwA program or track, or who would like to integrate elements of MSwA2010 into

an existing program

 provide mentors and advisors to programs to help them in the use and application of

MSwA2010

MSwA2010 Is Accepted as a Standard

In order for MSwA2010 to have significant influence on the state of software assurance

education, it is important for it to be accepted as the standard model for graduate efforts in

professional software assurance education. Activities that support such acceptance include general

knowledge and understanding of MSwA2010, use and application of its features, and formal

recognition by professional computing organizations (for example, ACM and IEEE-CS). We will

seek such formal recognition in the coming year.

MSwA2010 Stays Current

Software assurance methods and technology are dynamic and evolving. In order for a professional

software assurance curriculum to stay current, it is important for it to be regularly assessed and

updated as the discipline changes and advances. For MSwA2010 to remain viable, it must be

reviewed and updated at regular intervals. Such maintenance will require long-term stewardship

by an appropriate organization. Communication and agreement with such an organization is

another activity for the coming year.

46 | CMU/SEI-2010-TR-005

Appendix A: Bloom’s Taxonomy and the GSwE2009

Bloom‘s Taxonomy is a classification system devised in 1956 by group of educators led by

Benjamin Bloom [Bloom 1956]. The taxonomy can be used by educators to set the level of

educational and learning objectives required for students engaged in an education unit, course, or

program. Bloom‘s Taxonomy divides educational objectives into three domains: affective,

psychomotor, and cognitive. In this report, the focus is on the cognitive domain, which is

concerned with what we know and how we know it [Huitt 2006]. Conventional education systems

tend to stress outcomes in the cognitive domain, particularly the lower-level objectives.

Bloom‘s taxonomy is hierarchical; that is, learning at a higher level is dependent on attaining

prerequisite knowledge and skills at the lower levels. Table 1 provides a description of the

Bloom‘s Levels for the Cognitive Domain.

Note: This appendix was adapted from an appendix in the GSwE2009 [iSSec 2009].

Table 1: Bloom's Taxonomy

Level Competency Objective Descriptors

Knowledge (K) (Lowest level) Remembering previously learned material.

Test observation and recall of information, i.e., ―bring to

mind the appropriate information‖ (e.g., dates, events,

places, knowledge of major ideas, mastery of subject

matter).

list, define, tell, describe,

identify, show, label, collect,

examine, tabulate, quote,

name (who, when, where,

etc.)

Comprehension (C) Understanding information and ability to grasp meaning of

material presented. For example, translate knowledge

into new context, interpret facts, compare, contrast, order,

group, infer causes, predict consequences, etc.

summarize, describe,

interpret, contrast, predict,

associate, distinguish,

estimate, differentiate,

discuss, extend

Application (AP) Ability to use learned material in new and concrete

situations. For example, use information, methods,

concepts, and theories to solve problems requiring the

skills or knowledge presented.

apply, demonstrate, calculate,

complete, illustrate, show,

solve, examine, modify, relate,

change, classify, experiment,

discover

Analysis (AN) Ability to decompose learned material into constituent

parts in order to understand structure of the whole. This

includes seeing patterns, organization of parts,

recognition of hidden meanings, and identification of

parts.

analyze, separate, order,

explain, connect, classify,

arrange, divide, compare,

select, explain, infer

Synthesis (S) Ability to put parts together to form a new whole. This

involves using existing ideas to create new ones,

generalizing from facts, relating knowledge from several

areas, and predicting and drawing conclusions. It may

also involve adapting general solution principles to the

embodiment of a specific problem.

combine, integrate, modify,

rearrange, substitute, plan,

create, design, invent, what

if?, compose, formulate,

prepare, generalize, rewrite

Evaluation (E) (Highest level) Ability to pass judgment on value of

material within a given context or purpose. This involves

making comparisons and discriminating between ideas,

assessing value of theories, making choices based on

reasoned arguments, verifying value of evidence, and

recognizing subjectivity.

assess, decide, rank, grade,

test, measure, recommend,

convince, select, judge,

explain, discriminate, support,

conclude, compare,

summarize

47 | CMU/SEI-2010-TR-005

Appendix B: Coverage of the Practices by the Core Body of

Knowledge

This appendix resulted from process steps 2, 3, 4, and 7, as described in Section 2. It includes a

series of ten tables as follows:

 Summary Table: Knowledge Unit Coverage of SDLC Practices. This table contains a

summary of all tables to follow, reflecting the table name (most often an SDLC phase), the

categories within that table‘s topic, and a cross reference to the applicable BoK knowledge

units (KU) by category.

 Table 1: Software Security Practices That Span the SDLC. This table, and all subsequent

tables, reflect the references from which the practices were drawn (with citations), a brief

description (with citations), the categories within that table‘s topic, and a cross reference to

the applicable BoK knowledge units by category.

 Table 2: Requirements Engineering Practices

 Table 3: Architecture and Design Practices

 Table 4: Coding Practices

 Table 5: Testing Practices

 Table 6: Analysis of Software and Services in Static and Operational Contexts. In this table,

references are replaced by subject matter, indicating the object of the analysis.

 Table 7: Assembly, Evolution, and Deployment

 Table 8: Risk Mitigation Strategies for System Complexity and Scale

 Table 9: Governance and Management Practices

As described in Section 2, the purpose of the practices-to-knowledge-unit gap analysis (reflected

in the column titled ―Applicable Knowledge Units‖) was to ensure that all practice categories

were covered by at least one knowledge unit or that the MSwA2010 team made a conscious

decision to exclude some practice topic we thought was out of scope, for example, privacy. This

exercise was neither exhaustive nor rigorous, and the result should not be construed as a complete

traceability.

Knowledge Unit Coverage of SDLC Practices

Life-Cycle Phase/Topic Categories Applicable Knowledge Units

Table 1: Software Security Practices

that Span the SDLC

Fundamentals Fundamentals [6.1.1,6.2.1,6.3.1,

6.4.1, 6.4.2, 7.1.1]

Think like an attacker

Think like an attacker [5.1.1, 5.1.2,

5.2.1, 5.2.2, 5.3.2]

Evidence Evidence [3.1.2, 6.3.6]

Table 2: Requirements Engineering

Practices

Fundamentals Fundamentals [5.2.2, 7.1.1]

Process Process [1.1.1, 1.1.3, 1.2.2, 3.1.2,

6.2.1, 6.2.3, 7.1.2]

Elicitation Elicitation [2.2.2, 2.3.2, 6.2.1, 6.2.2]

Analysis

Analysis [2.2.1, 2.2.2, 2.2.3, 2.2.4,

2.3.1, 2.3.2, 3.1.1, 3.1.2, 3.3.1,

3.3.2, 5.1.3, 5.1.4, 5.2.2, 6.2.1,

48 | CMU/SEI-2010-TR-005

Life-Cycle Phase/Topic Categories Applicable Knowledge Units

7.1.1, 7.2.1, 7.2.2, 7.3.1, 7.3.2]

Specification Specification [5.1.4, 6.2.1]

Validation Validation [3.1.1, 3.1.2, 3.3.1, 3.3.2,

6.2.1, 6.2.2, 6.4.1, 6.4.2]

Table 3: Architecture and Design

Practices

Design concepts Design concepts [5.1.4, 6.2.1, 6.3.1]

Architecture

Architecture [5.1.4, 5.2.3, 6.2.1,

6.3.1]

Module/component design

Module/component design [5.1.4,

6.2.1]

Detailed design Detailed design [5.1.4, 6.2.1]

Design review/assessment Design review/assessment [6.2.1]

Table 4: Coding Practices Assurance coding standards Assurance coding standards [5.1.4,

6.2.1]

Code inspections Code inspections [5.1.4, 6.2.1]

Coding security checklists Coding security checklists [5.1.4,

6.2.1]

Metric analysis Metric analysis [3.2.1, 3.2.2, 3.2.3]

Environment-specific risks Environment-specific risks [2.1.1,

2.3.1, 5.1.1, 5.2.1, 5.2.2, 5.3.2,

7.1.1]

Table 5: Testing Practices Security testing (penetration, cases

based on requirements)

Security unit testing (white box)

Security integration testing

Security functional testing

Code coverage analysis

Black box security tools

Fuzz testing

Security testing, all categories [3.1.1,

3.1.2, 3.3.1, 3.3.2, 4.1.4, 5.1.2,

5.2.1, 5.3.2, 6.2.1, 6.2.3, 6.3.5]

Table 6: Analysis of Software and

Services in Static and Operational

Contexts

Technologies and methods

Threat, vulnerability, and

security assessment

Threat, vulnerability, and security

assessment [3.1.2, 3.3.1, 3.3.2,

5.1.2, 5.1.3]

Requirements specification,

architecture, design, and

code analysis

Requirements specification,

architecture, design, and code

analysis [5.1.3, 6.2.1]

Flow and service analysis

Flow and service analysis [5.2.2,

6.2.1, 6.3.2, 6.3.3, 6.3.4, 7.2.1,

7.2.2., 7.2.3, 7.2.4]

Reverse engineering Reverse engineering [6.3.1, 6.3.2,

6.3.3, 6.3.4]

Verification and testing of

security and functionality

Verification and testing of security

and functionality [6.2.1, 6.3.5, 6.4.1,

6.4.2]

Application of standards and

practices

Application of standards and

practices [1.2.1]

Applied to software, services, data,

networks, humans, and operations

For system types: systems,

systems-of-systems, distributed

systems, SOA and cloud systems,

Systems, systems-of-systems,

distributed systems, SOA and cloud

systems, infrastructure systems,

49 | CMU/SEI-2010-TR-005

Life-Cycle Phase/Topic Categories Applicable Knowledge Units

infrastructure systems, embedded

systems

embedded systems [5.1.1, 6.4.1,

6.4.2]

Table 7: Assembly, Evolution, and

Deployment

Incremental development and

evolution

Incremental development and

evolution [1.1.1, 1.1.2, 1.1.3, 6.2.1]

Systems integration System integration [6.2.1]

User training User training [7.1.3]

Maintenance and patching Maintenance and patching [6.2.3]

System monitoring and management System monitoring and management

[5.2.1, 5.2.2, 7.2.1, 7.2.2, 7.2.3,

7.2.4, 7.3.1, 7.3.2]

Table 8: Risk Mitigation Strategies

for System Complexity and Scale

Incremental development and

evolution

Incremental development and

evolution [5.1.4, 6.2.1]

Integration Integration [6.2.1]

User training User training [7.1.3]

Maintenance and patching Maintenance and patching [7.2.3]

System monitoring and management System monitoring and management

[7.2.1, 7.2.2]

Table 9: Governance and

Management

Business case

Business case [4.1.1, 4.1.2, 4.1.3,

4.1.4, 7.1.1, 7.1.2]

Risk management

Risk management [2.1.1, 2.1.2,

2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.2.4,

3.1.1, 3.1.2, 3.3.1, 3.3.2, 7.1.1]

Awareness

Awareness [part of all KUs; 5.1.2]

Business case [4.1.1, 4.1.2, 4.1.3,

4.1.4] (Awareness for business

leaders)

Training, education, certification

Training, education, certification

[1.2.1, 7.1.3]

Project management (process

management)

Project management [1.1.1, 1.2.2,

4.2.1, 4.2.2, 7.1.1, 7.1.2]

SwA practices integrated with SDLC SwA practices/process [1.1.1, 1.1.2,

1.1.3, 1.2.1, 1.2.2, 6.2.1, 7.1.2]

Transition and adoption Adoption [1.1.1, 1.1.2, 1.2.1, 1.2.2,

7.1.1]

Measurement Measurement [1.2.2, 3.2.1, 3.2.2,

3.2.3, 6.3.6]

Ethics Ethics [5.3.1]

Compliance Compliance [4.3.1, 4.3.2, 4.3.3,

6.3.6]

Evaluation (systems, software,

people)

Evaluation [3.1.2, 3.3.1, 3.3.2, 5.2.4,

6.1.1, 6.3.1, 6.3.2, 6.3.3, 6.3.4,

6.3.5, 6.3.6]

Acquisition Acquisition [1.1.3, 1.2.1, 1.2.2, 6.4.1,

6.4.2]

50 | CMU/SEI-2010-TR-005

Table 1: Software Security Practices That Span the SDLC

References Description Category

Applicable

Knowledge Units

Bracketed numbers

refer to the

references at the

end of Appendix B.

 Fundamentals

Fundamentals [6.1.1,

6.2.1, 6.3.1, 6.4.1,

6.4.2, 7.1.1]

Think like an attacker

Think like an attacker

[5.1.1, 5.1.2, 5.2.1,

5.2.2, 5.3.2]

Evidence Evidence [3.1.2, 6.3.6]

Properties of secure

software [1] [6]

Core and influential properties of

software that enable the

understanding and description of its

security characteristics [1] [6]

Fundamentals Fundamentals [6.2.2]

SAFECode [23] Integrity principles: least privilege

access, separation of duties, chain of

custody and supply chain integrity;

persistent protection; compliance

management [23]

Fundamentals Fundamentals [6.2.2,

6.4.1, 6.4.2]

Compliance [4.3.1,

4.3.2, 4.3.3]

Guiding security and

privacy principles:

Microsoft Software

Development

Lifecycle [4]

SDL reflects the SD3+C principles:

secure by design (four principles),

secure by default (five principles),

secure in deployment (three

principles), and communications (two

principles). PD3+C includes privacy by

design (four principles), privacy by

default (one principle), privacy in

deployment (one principle), and

communications (three principles). [4]

Fundamentals

(Privacy OK at this

level but likely no

further.)

Fundamentals [6.2.2]

Fundamental

concepts and

principles: SwACBK

[14] [20] [27]

Basic concepts (dependability,

security, assurance, etc.); 14 system

security principles (least privilege, etc);

safety; secure software engineering;

security properties (CAI,

accountability) [14] [20] [27]

Fundamentals

(Safety OK at this level

but no further.)

Fundamentals [6.2.2]

Other general topics:

James Madison

University [6]

Network security, controls, information

assurance

Cryptography: basics and introduction

to deciding on techniques to use

Fundamentals of computer security:

access control, confidentiality,

integrity, etc. [6]

Fundamentals

Fundamentals [5.2.2,

5.1.4, 5.3.2]

IEEE article: Yasar

et al [20]

Goals of software security: prevention,

traceability and auditing, monitoring,

privacy and confidentiality, multi-level

security, anonymity, authentication,

integrity [20]

Fundamentals Fundamentals [6.2.2]

Computing

Curriculum Series [8]

The theory and application of access

control to computer systems and the

information contained in them [8]

Fundamentals Fundamentals [5.2.3]

Computing

Curriculum Series

[10]

Concepts of information assurance,

including data persistence, integrity,

etc. [10]

Fundamentals Fundamentals [6.2.2]

Computing

Curriculum Series

[11]

Cryptography, forensics, and

biometrics [11]

Fundamentals Fundamentals [5.1.4]

Computing

Curriculum Series

[10]

Network security for net-centric

computing environments [10]

Fundamentals—special

topics

Fundamentals [5.2.1]

51 | CMU/SEI-2010-TR-005

References Description Category

Applicable

Knowledge Units

Computing

Curriculum Series [9]

Data security and protection [9] Fundamentals—special

topics

Fundamentals [5.2.3]

Computing

Curriculum Series [9,

10]

Security and protection considerations

associated with operating systems [9,

10]

Fundamentals—special

topics

Fundamentals [5.1.4]

CMU—Heinz [21] Computer system vulnerabilities;

effective cryptographic techniques and

protocols; access control policies and

mechanisms; and implications of

security technology in the realm of risk

management [21]

Design and implementation of

computer security policies and

standards, disaster recovery plans,

system security architectures and

physical security controls, legal

aspects of computer system auditing

in a secure environment, management

of a site’s computer security on a daily

basis [21]

A mixture,

fundamentals

Fundamentals [5.1.2,

5.1.4, 5.2.1, 5.2.3,

5.3.2]

Risk management

[2.3.1, 2.3.2, 2.3.3,

2.3.4, 4.1.2, 7.3.1,

7.3.2]

Design and

implementation [6.2.1,

6.4.1, 6.4.2, 7.1.2]

CMU—Information

Networking Institute

(INI) [21]

Introduction to techniques for

defending against hostile adversaries

in modern computer systems and

networks: operating system security,

network security, firewalls, denial-of-

service attacks, user authentication,

network server and mobile security

[21]

A mixture,

fundamentals

Fundamentals [5.1.4,

5.2.3, 5.2.4]

Think like an attacker

Think like an attacker

[5.1.1, 5.1.2, 5.2.1,

5.3.2]

ISC
2
 Certified

Secure Software

Lifecycle

Professional

(CSSLP) [22]

Confidentiality, availability, integrity,

(CAI); authentication, authorization,

auditing; security design principles

[11]; risk management; regulations;

privacy and compliance; software

architecture; software development

methodologies; legal; standards;

security models (e.g., Bell-Lapadula);

trusted computing; acquisition [22]

Fundamentals Fundamentals [5.1.4,

5.2.2, 5.2.3, 5.3.1]

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4, 4.1.2, 7.3.1,

7.3.2]

Compliance [4.3.1,

4.3.2 4.3.3]

Security engineering:

Anderson [16]

Usability and psychology:

psychological attacks, perceptual bias,

mental process, social psychology

(Sections 2.2, 2.3) [16]

Economics: information economics,

game theory, security and

dependability (Sections 7.3, 7.4, 7.5,

2.3) [16]

Think like an attacker

Usability and

psychology [7.1.3]

Think like an attacker

[5.1.1, 5.1.2, 5.2.1,

5.3.2]

Fundamentals—special

topics

Economics [7.1.1]

Dangers and

damage: SwACBK

[14]

Attackers (types, motivations); attack

methods (malicious code, hidden

software, social engineering, physical);

non-malicious dangers; attacks across

the life cycle; known

vulnerabilities/exploits [14]

Think like an attacker

Think like an attacker

[5.1.1, 5.1.2, 5.2.1,

5.3.2]

Attack patterns [1] Formalized capture of common

methods of attacking software to serve

as guides for improving software

attack resistance and resilience [1]

Think like an attacker Think like an attacker

[5.1.1, 5.1.2, 5.2.1,

5.3.2]

Building Security In

Maturity Model

(BSIMM) domain,

Attack models: think like an attacker;

threat modeling; abuse case

development/refinement; data

Think like an attacker

Think like an attacker

[5.1.1, 5.1.2, 5.2.1,

5.3.2]

52 | CMU/SEI-2010-TR-005

References Description Category

Applicable

Knowledge Units

intelligence [2] classification; technology-specific

attack patterns

Threat modeling [3.1.2,

3.3.1, 3.3.2]

OWASP Software

Assurance Maturity

Model (SAMM),

construction [3]

Threat assessment: identify high-level

threats; build threat models, attacker

profiles, abuse case models; evaluate

third-party software risk; add

compensating controls [3]

Think like an attacker

Think like an attacker

[5.1.3, 5.2.2]

Threat assessment/risk

evaluation [3.1.2, 3.3.1,

3.3.2]

Evaluate third party

software risk [2.2.2,

2.2.4]

Assurance cases [1]

[6]

Structured mechanism for capturing,

communicating, and validating desired

or attained levels of software security

assurance in terms of the properties of

secure software [1] [6]

Evidence Evidence [3.1.2, 6.3.6]

Assurance cases:

JMU [6]

Assurance cases: top-level claim such

as a safety- or security-related claim,

the arguments for this claim, and the

evidence that supports these

arguments [6]

Evidence Evidence [3.1.2, 6.3.6]

53 | CMU/SEI-2010-TR-005

Table 2: Requirements Engineering Practices

References Description Category

Applicable

Knowledge Units

Bracketed numbers

refer to the

references at the

end of Appendix B.

 Fundamentals Fundamentals [5.2.2,

7.1.1]

Process

Process [1.1.1, 1.1.3,

1.2.2, 3.1.2, 6.2.1,

6.2.3, 7.1.2]

Elicitation

Elicitation [2.2.2, 2.3.2,

6.2.1, 6.2.2]

Analysis

Analysis [2.2.1, 2.2.2,

2.2.3, 2.2.4, 2.3.1,

2.3.2, 3.1.1, 3.1.2,

3.3.1, 3.3.2, 5.1.3,

5.1.4, 5.2.2, 6.2.1,

7.1.1, 7.2.1, 7.2.2,

7.3.1, 7.3.2]

Specification

Specification [5.1.4,

6.2.1]

Validation Validation [3.1.1, 3.1.2,

3.3.1, 3.3.2, 6.2.1,

6.2.2, 6.4.1, 6.4.2]

Fundamentals Fundamentals [5.2.2,

7.1.1]

Threat objectives

[3.1.1]

Requirements:

Bishop [07]

Concept of operations: business and

organization issues, high-level

requirements, threat and security

objectives [Section 18.2.1.1, 19.1.1]

[07]

Fundamentals Fundamentals [5.2.2,

7.1.1]

Threat objectives

[3.1.1]

Analysis: security requirements,

feasibility study, prototyping,

vulnerability analysis [Sections 18.1.2,

18.2.2.1, 18.2.3.1, 19.2.3.3, 23.1,

23.2] [07]

Analysis

Vulnerability analysis

[3.1.2, 3.3.1, 3.3.2]

Specification: technical, functional,

formal, traceability [Sections 18.2.2.1,

19.2.2.2, 19.2.4.1, 20.2] [07]

Specification Specification [6.2.1]

Security engineering,

requirements

engineering:

Anderson [16]

Security requirements engineering:

managing requirements, requirements

evolution (Section 25.4) [16]

Process Process [1.1.1, 1.2.2,

6.2.3]

Standard security

requirements

engineering process

[1]

Establish a defined process for

identifying and documenting security

requirements, such as Security Quality

Requirements Engineering (SQUARE)

Process Process [1.2.2, 6.2.1]

Secure software

requirements:

SwACBK [14]

Identify needs (stakeholder, asset,

threat, usability, etc.); requirements

analyses (risk, feasibility, tradeoffs);

specification; validation; assurance

case [14]

Process

Assurance case [3.1.2]

Risk [2.2.1, 2.2.2, 2.2.3,

2.2.4, 7.3.1, 7.3.2]

Security risk

assessment [1] [6]

Perform a risk assessment aimed at

security exposures, either as part of a

project risk assessment or as a stand-

alone activity [1] [6]

Process, analysis

Process, analysis

[5.1.3, 5.2.2]

Risk assessment

[3.1.1, 3.1.2, 3.3.1,

3.3.2, 7.3.1, 7.3.2]

Risk assessment

[2.3.1, 2.3.2]

54 | CMU/SEI-2010-TR-005

References Description Category

Applicable

Knowledge Units

Assurance for CMMI,

engineering [18]

Understand the operating environment

and define operating constraints for

assurance within environments of

system deployment; develop customer

assurance requirements; define

product assurance requirements;

identify operational concepts and

scenarios for assurance; analyze

assurance requirements; balance

assurance needs against cost benefits

[18]

Process, analysis Process, analysis

[5.1.3, 5.2.2, 7.1.1,

7.2.1, 7.2.2]

OWASP SAMM,

construction [3]

Security requirements: specify security

requirements based on business

functionality and known risks; reflect

requirements in supplier agreements;

expand audit program [3]

Process + others Known risk [2.3.1,

2.3.2, 7.1.1]

JMU [6]

Identify stakeholder security-related

needs; asset protection needs; threat

analysis; interface and environment

requirements; usability needs;

reliability needs; availability, tolerance

and survivability needs; sustainability

(maintainability) needs; deception

needs; validity, verifiability, and

evaluation needs; certification needs;

system accreditation and auditing

needs; analysis of conflicts among

security needs [6]

Specify software-related security

policy and security functionality

requirements [6]

Process, analysis,

specification, validation

Tolerance [3.1.1]

Threat

analysis/validation

[3.1.1, 3.1.2, 3.3.1,

3.3.2]

Survivability [3.2.4,

73.1, 7.3.2]

Phase 1

requirements:

Microsoft SDL [4]

Define quality gates/bug bar (minimum

level of quality); analyze security and

privacy risk; identify security

requirements; identify privacy

requirements [4]

Process, elicitation,

specification, analysis

Risk analysis [3.1.2,

3.3.1, 3.3.2]

Security and privacy

risk [2.2.2, 2.3.2]

Security

requirements

elicitation [1] [6]

Conduct a security requirements

elicitation activity to identify potential

security requirements [1] [6]

Elicitation Requirements [6.2.1]

BSIMM domain,

intelligence [2]

Standards and requirements: elicit

security requirements [2]

Elicitation Elicitation [6.2.1]

Recommend COTS; develop

standards for security controls

(authentication, input validation, etc.);

develop standards for technologies in

use; create standards review board [2]

Analysis, specification Analysis, specification

[5.1.4]

Standards [1.2.1, 1.2.2,

6.1.1, 6.1.2]

SAFECode [23] Identify requirements from use cases,

customer inputs, company policy, best

practices, and security improvement

goals (provides a list of 12 areas that

requirements should cover) [23]

Elicitation

Elicitation [6.2.1]

Prioritize requirements based on

threat and risk levels [23]

 Analysis

Threat and risk levels

[3.1.1]

Risk levels [2.1.2,

2.2.2, 2.3.2, 7.1.1]

ISC
2
 CSSLP [22] Policy decomposition: CAI

requirements; authentication,

authorization, auditing requirements;

Elicitation

Requirements [6.2.1]

55 | CMU/SEI-2010-TR-005

References Description Category

Applicable

Knowledge Units

internal and external requirements [22]

Identification and gathering: data

classification; use cases; abuse cases

(inside and outside adversaries) [22]

Analysis Analysis [5.1.2, 5.1.3,

5.1.4]

Computing

Curriculum Series

[10]

Specification of human-computer

interactions to protect against insecure

use of software application [10]

Specification Specification [6.2.1,

6.2.2]

Threat identification

[1] [6]

Use techniques such as misuse/abuse

cases, threat modeling, attack

patterns, or attack trees to identify

security threats [1] [6]

Analysis

Analysis [5.1.3, 5.2.2,

5.3.2]

Threat modeling [3.1.2,

3.3.1, 3.3.2]

Security

requirements

categorization and

prioritization [1] [6]

Categorize and prioritize security

requirements to separate true

requirements from architectural

recommendations and to optimize

cost-benefit considerations [1] [6]

Analysis Requirements [6.2.1]

Industrial Network

Security [19]

Identify cybersecurity issues as related

to safety of industrial networks [19]

Analysis Analysis [5.1.1]

Security

requirements

inspection [1] [6]

Inspect security requirements in

conjunction with other requirements to

ensure they are correct and complete

[1] [6]

Validation Validation [3.1.1, 3.1.2,

3.3.1, 3.3.2, 6.2.1]

56 | CMU/SEI-2010-TR-005

Table 3: Architecture and Design Practices

References Brief Description Category

Applicable

Knowledge Units

Bracketed numbers

refer to the

references at the

end of Appendix B.

 Design concepts

Design concepts [5.1.4,

6.2.1, 6.3.1]

Architecture

Architecture [5.1.4,

5.2.3, 6.2.1, 6.3.1]

Module/component

design

Module/component

design [5.1.4, 6.2.1]

Detailed design Detailed design [5.1.4,

6.2.1]

Design

review/assessment

Design

review/assessment

[6.2.1]

JMU [6] Principles and guidelines for designing

secure software; principles-based

review; access control issues; cross-

domain control; identity management;

proper use of encryption and

encryption protocols; design patterns

for secure software; deception and

diversion; forensic support; assurance

cases for design; secure design

processes and methods; design

reviews for security; trust

management: organizations and

software entities and the implications

of their trustworthiness; tolerance and

defense in depth: includes

redundancy, diversity, separation, and

many design concerns, such as

damage containment [6]

A mixture

A mixture [5.1.4, 5.2.3,

5.2.4, 6.2.1, 6.3.1]

Overarching SwA

strategies, principles

Assurance cases

[3.1.2]

Process [1.2.2]

SAFECode [23] Threat analysis (aka threat modeling,

risks analysis); use/misuse cases to

drive understanding of how attackers

might attack a system [23]

Design concepts Design concepts [5.1.3,

5.2.3, 5.3.2]

Threat/risk analysis

[3.1.2, 3.3.1, 3.3.2]

Risk analysis [2.3.1,

2.3.2]

Select standard proven security

toolkits such as cryptographic and

protocol libraries [23]

Module/component

design

Module/component

design [5.1.4, 6.2.1]

CMU—INI [21] Choices of programming languages,

operating systems, databases and

distributed object platforms, common

software vulnerabilities, auditing

software, proving properties of

software, watermarking, code

obfuscation, tamper-resistant

software, open and closed source

development [21]

Design concepts,

detailed design. Some

of this may also fit in

coding.

SwA environment

[5.1.4, 6.1.1, 6.1.2]

Security principles

[1] [6]

High-level perspectives/practices to

provide prescriptive guidance for

architecture and design [1] [6]

Design concepts

Design concepts [5.1.4]

Prescriptive guidance

[1.2.2]

Architecture Architecture [6.2.1,

6.3.1]

Security guidelines

[1]

Technology-specific prescriptive

guidance founded on demonstrated

experience to guide integrating

Design concepts

Technology [5.1.4,

6.1.1, 6.1.2]

57 | CMU/SEI-2010-TR-005

References Brief Description Category

Applicable

Knowledge Units

security concerns into architecture and

design [1]
Architecture Architecture [6.2.1,

6.3.1]

Secure software

design: SwACBK

[14]

Design objectives; design principles

and guidelines; design assumptions,

decisions, and rationales; secure

architecture; security functionality;

encryption; deception and diversion;

assurance cases; design reviews [14]

Design concepts

Design concepts [5.1.4,

6.2.1, 6.3.1]

Assurance cases

[3.1.2]

Design: Bishop [07] Design principles: least privilege, fail-

safe defaults, economy of mechanism,

complete mediation, open design,

separation of privilege, least common

mechanism, psychological

acceptability, modularity, layering

[Sections 13.2, 19.2.1] [07]

specification [Sections 18.2.2.2,

19.2.2.1, 19.2.2.2] [07]

Design concepts

Design concepts [5.1.4]

Architecture: component configuration,

data descriptions, interface

description, security function

Architecture

Architecture [5.1.4,

6.2.1, 6.3.1]

Component design: interface

specification, exception specification

[Sections 19.2.2.4] [07]

Module/component

design

Module/component

design [5.1.4, 6.2.1]

Attack patterns [1] Formalized capture of common

methods of attacking software to serve

as guides for improving the attack

resistance and resilience of the

software architecture [1]

Design concepts Design concepts [5.1.2,

5.2.1, 5.3.2]

Security engineering,

architecture and

design practices:

Anderson [16]

Security protocols: authentication,

challenge and response, reflection

attacks, message manipulations,

protocol attacks, managing encryption

keys (Chapter 3) [16]

Design concepts

Design concepts [5.1.4,

5.2.3, 6.2.1]

Passwords: password difficulties,

design errors, social-engineering

attacks, phishing countermeasures,

interface design, password cracking

(Sections 2.4, 2.5.3, 2.5.4) [16]

Detailed design

Detailed design [5.1.4]

OS access controls: groups and roles,

access control lists, middleware

(Sections 4.2.1 – 4.2.8) [16]

Architecture

Architecture [5.1.4]

Cryptography: block ciphers, one-way

functions, asymmetric ciphers, random

oracle model, symmetric crypto

primitives, modes of operations,

asymmetric crypto primitives (Chapter

5) [16]

Detailed design

Detailed design [5.1.4]

Distributive systems: concurrency

issues, fault tolerance and failure

recovery, naming issues (Sections 6.2,

6.3, 6.4) [16]

Module/component

design

Module/component

design [5.1.4, 6.2.1]

Multi-level security: security policy

models, information flow control, multi-

level integrity models, composability,

closed security environments,

Architecture

Architecture [5.1.4,

6.2.1]

58 | CMU/SEI-2010-TR-005

References Brief Description Category

Applicable

Knowledge Units

polyinstantiation (Chapter 8) [16]

Multilateral security:

compartmentalization, the Chinese

Wall, the BMA model, inference

control (Chapter 9) [16]

Architecture

Architecture [5.1.4,

6.2.1]

Network security: protocol

vulnerabilities, Trojans, viruses,

worms, rootkits, firewalls, span filters,

censorware, encryption (Sections

21.3, 21.4) [16]

A mixture (capture

example methods of

attack)

A mixture (capture

example methods of

attack) [5.2.3]

Methodology: top-down design,

iterative design (Section 25.3) [16]

Design concepts Design concepts [5.1.4,

6.2.1]

Methodology [1.1.1,

6.2.1]

BSIMM domain,

intelligence [2]

Security features and design: create

usable security patterns for major

security controls; build middleware

frameworks for controls; create other

security guidance [2]

Design concepts,

architecture

Design concepts,

architecture [5.1.4,

6.2.1]

Assurance for CMMI,

engineering [18]

Develop alternative solutions and

selection criteria for assurance;

architect for assurance; design for

assurance [18]

Architecture Architecture [5.1.4,

6.2.1, 6.3.1]

Secure design

patterns at the

architectural level

[15]

These patterns focus on high-level

partitioning of responsibilities among

system components and the external

interaction among those components

[15]

Architecture Architecture [5.1.4,

6.2.1]

OWASP SAMM,

construction [3]

Secure architecture: apply security

principles to design; secure design

patterns; security services; formal

reference architecture; validate use of

these [3]

Architecture Architecture [5.1.4,

6.2.1]

Computing

Curriculum Series [9]

Data security and protection [9] Architecture Architecture [5.1.4,

6.2.1]

SwA Pocket Guide:

―Key Practices for

Mitigating the Most

Egregious

Exploitable Software

Weaknesses,‖ Table

1 [17]

Race condition; client-side

enforcement of server-side security

[17]

Architecture Architecture [5.1.4]

Detailed design [5.1.4]

Computer

Curriculum Series

[10]

Security modeling of operating system

properties [10]

Architecture

Architecture [5.1.4,

6.3.1]

Computing

Curriculum Series

[12]

Security aspects of database design

and database administration [12]

Architecture

Architecture [5.1.4,

6.3.1]

Module/component

design

Module/component

design [5.1.4]

Industrial Network

Security [19]

Countermeasures via design/planning,

technology, and

people/policies/assurance [19]

Architecture Architecture [5.1.1]

Module/component

design

Module/component

design [5.1.4, 6.2.1]

Assessment Assessment [6.2.2]

59 | CMU/SEI-2010-TR-005

References Brief Description Category

Applicable

Knowledge Units

Phase 2 design:

Microsoft SDL [4]

Security design review; use design

best practices (many details here);

attack surface measurement; enable

least privilege; secure default

installation; defense-in-depth; security

and privacy risk analysis; threat

modeling [4]

A mixture

Risk analysis/threat

modeling [3.1.2, 3.3.1,

3.3.2]

Security and privacy

risk analysis [2.3.1,

2.3.2, 2.3.3, 2.3.4]

Secure design

patterns at the

design level [15]

These patterns define internal design

and implementation of the parts of

system components that provide

security capabilities. [15]

Module/component

design

Module/component

design [5.1.4, 6.2.1]

SwA Pocket Guide

[17]

Failure to preserve SQL query

structure (SQL injection); failure to

preserve web page structure (cross-

site scripting); failure to preserve OS

command structure (OS command

injection); race condition; external

control of critical state data; external

control of file name or path; untrusted

search path; hard-coded password

[17]

Module design Module design [5.1.4]

Construction: Bishop

[7]

Detailed design: cryptography, key

management, cipher techniques,

authentication, naming and

certificates, web identities, access

control mechanisms, malicious logic,

information flow (Chapters 9, 10, 11,

12, 15, 16, 22; Sections 14.5, 14.6) [7]

Detailed design Detailed design [5.1.4]

CMU—INI [21] Detailed study of cryptographic

mechanisms: symmetric encryption,

public key encryption, digital

signatures, message authentication

codes, crypto protocols, cryptanalysis,

and further detailed crypto techniques

[21]

Detailed

design/assessment

Detailed design [5.1.4]

Architectural risk

analysis

(ARA) [1]

Perform a detailed risk assessment of

the software architecture and design

and its ability to securely support the

requirements of the software [1]

Design

review/assessment

Risk assessment

[3.1.1, 3.1.2, 3.3.1,

3.3.2, 7.1.1]

Risk assessment

[2.2.1, 2.2.2, 2.3.1,

2.3.2]

BSIMM domain,

SSDL touchpoints [2]

Architectural analysis: capture

software architecture; apply lists of

risks and threats; adopt a review

process (STRIDE
19

, Cigital’s

Architectural Risk Analysis [ARA]);

assessment and remediation plan [2]

Design

review/assessment

Design

review/assessment

[1.1.2, 1.2.2, 5.1.4]

Architectural analysis

[6.3.1]

Risk management

[2.2.3, 2.2.4, 2.3.3,

2.3.4]

OWASP SAMM,

verification [3]

Design review: software attack

surface; design meets security

requirements; design review service

for project teams; release gates [3]

Design

review/assessment

Design review [6.2.1]

Computing Software quality assurance including Design Quality assurance

19

 STRIDE stands for Spoofing identity, Tampering with data, Repudiation, Information disclosure, Denial of
service, Elevation of privilege. STRIDE is a threat model developed by Microsoft. See
http://msdn.microsoft.com/en-us/library/ee823878%28CS.20%29.aspx.

http://msdn.microsoft.com/en-us/library/ee823878%28CS.20%29.aspx

60 | CMU/SEI-2010-TR-005

References Brief Description Category

Applicable

Knowledge Units

Curriculum Series [9] inspection of designs [9] review/assessment [6.2.2]

SwA Pocket Guide

[17]

Improper access control

(authorization); execution with

unnecessary privileges [17]

Design

review/assessment

Design

review/assessment

[5.3.2, 6.2.1]

ISC
2
 CSSLP [22] Design processes: attack surface

evaluation; threat modeling, control

identification and prioritization;

documentation [22]

Design concepts Design concepts [5.1.4,

6.2.1]

Design processes

[1.2.2]

Threat modeling [3.1.2,

3.3.1, 3.3.2]

Design considerations: CAI;

authentication, authorization, and

auditing; security design principles;

interconnectivity; security

management interfaces; identity

management [22]

Design concepts

Design concepts [5.1.4,

6.2.1]

Architecture: distributed computing;

service-oriented architecture; rich

internet applications; pervasive

computing; integration with existing

architectures; software as a service

[22]

Architecture

Architecture [5.1.4,

6.2.1, 6.3.1]

Technologies: authentication and

identity management; credential

management; flow control; audit; data

protection; computing environment;

digital rights management; integrity

(code signing) [22]

Module/component

design

Module/component

design [5.1.4, 6.2.1]

Design and architectural technical

review [22]

Detailed design

Detailed design [5.1.4]

Design

review/assessment

Design review/

assessment/inspection

[6.2.1]

61 | CMU/SEI-2010-TR-005

Table 4: Coding Practices

References Brief Description Coding Categories Applicable

Knowledge Units

Bracketed numbers

refer to the

references at the

end of Appendix B.

 Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Code inspections

Code inspections

[5.1.4, 6.2.1]

Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

Metrics analysis

Metrics analysis [3.2.1,

3.2.2, 3.2.3]

Environment-specific

risks

Environment-specific

risks [2.1.1, 2.3.1,

5.1.1, 5.2.1, 5.2.2,

5.3.2, 7.1.1]

Proof-carrying code Proof-carrying code

[5.1.4, 6.2.1]

Assurance for CMMI,

engineering [18]

Implement assurance design for

product components; identify

deviations from assurance coding

standards [18]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Code inspections

Code inspections

[5.1.4, 6.2.1]

Secure design

patterns at the

implementation level

[15]

These patterns focus on specific low-

level methods or functions that

implement security features. [15]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Code inspections

Code inspections

[5.1.4, 6.2.1]

Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

Security engineering,

coding: Anderson

[16]

API security: cryptographic attacks,

protocol attacks, concurrency attacks

(Section 18.2, 18.3) [16]

Environment-specific

risks

Environment-specific

risks [5.2.2]

Secure coding

practices [1] [6] [28]

[29]

Use sound and proven secure coding

practices to aid in reducing software

defects introduced during

implementation [1] [6] [28] [29]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Implementation [6.2.1,

6.2.2]

Code inspections Code inspections

[5.1.4, 6.2.1]

Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

SAFECode [23] Use secure coding practices: minimize

unsafe function use; use latest

compiler toolset; use static and

dynamic analysis tools; manual code

review; validate input and output; use

anti-cross-site scripting libraries; use

canonical data formats; avoid string

concatenation for dynamic SQL;

eliminate weak cryptography; use

logging and tracing [23] [28] [29]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Source code review

for security

vulnerabilities [1] [6]

Perform source code review using

static code analysis tools, metric

analysis, and manual review to

minimize implementation-level security

bugs [1] [6]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Code inspections Code inspections

[5.1.4, 6.2.1]

Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

Metrics analysis Metrics analysis [3.2.1,

3.2.2, 3.2.3]

Secure software

construction:

Common vulnerabilities; code

construction (security principles,

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

62 | CMU/SEI-2010-TR-005

References Brief Description Coding Categories Applicable

Knowledge Units

SwACBK [14] coding standards and practices) [14]

[28] [29]
Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

Security engineering,

coding: Anderson

[16]

Sandboxing, proof-carrying code

(Section 4.2.9) [16]

Proof-carrying code Proof-carrying code

[5.1.4, 6.2.1]

BSIMM domain,

SSDL Touchpoints

[2]

Code review: code review tools;

development of customized rules;

profiles for tool use by different roles;

manual analysis; tracking/measuring

results [2]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Code inspections Code inspections

[5.1.4, 6.2.1]

Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

Metrics analysis Metrics analysis [3.2.1,

3.2.2, 3.2.3]

OWASP SAMM,

verification [3]

Code review: security requirements

review checklists; code-level

vulnerabilities; intensive high-risk code

reviews; automation; code analysis

integrated with SDLC;

language/application specific risks;

code release gates [3]

Code inspections Code inspections

[5.1.4, 6.2.1]

Risk management

[2.2.3, 2.2.4, 2.3.3]

Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

Phase 3

implementation:

Microsoft SDL [4]

Specify tools (code analysis,

compilers); develop coding checklists;

enforce banned functions; static

analysis; user guidance; usage

scenarios; many detailed practices [4]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Code inspections

Code inspections

[6.3.1, 6.3.2, 6.3.3,

6.3.4]

Tools [6.1.1, 6.1.2]

Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

Environment-specific

risks

Environment-specific

risks [5.1.1]

Risk management

[2.3.3, 2.3.4]

Phase 4 verification:

Microsoft SDL [4]

Secure code review (depth based on

most at-risk components); defined exit

criteria [4]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Code inspections Code inspections

[5.1.4, 6.2.1]

Risk management

[2.2.3, 2.2.4, 2.3.3]

Computing

Curriculum Series

[10]

Foundations of information security as

part of programming fundamentals

and secure programming [10]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Computing

Curriculum Series

[10]

Robust and security enhanced

programming [10]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

SwA Pocket Guide

[17]

Improper input validation; improper

encoding or escaping of output;

cleartext transmission of sensitive

information; failure to constrain

operations within bounds of a memory

buffer; failure to control generation of

code (code injection); download of

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Code inspections Code inspections

[5.1.4, 6.2.1]

Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

63 | CMU/SEI-2010-TR-005

References Brief Description Coding Categories Applicable

Knowledge Units

code without integrity check; improper

resource shutdown or release;

improper initialization; use of broken or

risk cryptographic algorithm; insecure

permission assignment for critical

resource; use of insufficiently random

values [17]

ISC
2
 CSSLP [22] Declarative vs. programmatic security;

common software vulnerabilities and

countermeasures; defensive coding

practices; exception management;

configuration management; build

environment; code peer review; code

analysis; anti-tampering techniques;

interface coding [22]

Assurance coding

standards

Assurance coding

standards [5.1.4, 6.2.1]

Code inspections Code inspections

[5.1.4, 6.2.1]

Coding security

checklists

Coding security

checklists [5.1.4, 6.2.1]

64 | CMU/SEI-2010-TR-005

Table 5: Testing Practices

References Brief Description Testing Categories Applicable

Knowledge Units

Bracketed numbers

refer to the

references at the

end of Appendix B.

 Security requirements/

penetration testing

Security unit testing

(white box)

Security integration

testing

Security functional

testing

Code coverage analysis

Black box security tools

Fuzz testing

Security testing, all

categories [3.1.1,

3.1.2, 3.3.1, 3.3.2,

4.1.4, 5.1.2, 5.2.1,

5.3.2, 6.2.1, 6.2.3,

6.3.5]

Unique aspects of

software security

testing [1] [6]

Understand the differences between

software security testing and

traditional software testing and plan

how best to address these (including

thinking like an attacker and

emphasizing how to exercise what

the software should not do) [1] [6]

Security requirements/

penetration testing

Security integration

testing

Security functional

testing

Black box security tools

Testing methods

[6.2.1]

Functional test

cases for security [1]

[6]

Construct meaningful functional test

cases (using a range of techniques)

that demonstrate the software’s

adherence to its functional

requirements, including its security

requirements (positive requirements)

[1] [6]

Security requirements/

penetration testing

Security functional

testing

Black box security tools

Testing methods

[6.2.1, 6.3.5]

Risk-based test

cases for security [1]

[6]

Develop risk-based test cases (using,

for example, misuse/abuse cases,

attack patterns, or threat modeling)

that exercise common mistakes,

suspected software weaknesses, and

mitigations intended to reduce or

eliminate risks to ensure they cannot

be circumvented (negative

requirements) [1] [6]

Security requirements/

penetration testing

Security functional

testing

Black box security tools

Risk-based test

cases/threat modeling

[3.1.2, 3.3.1, 3.3.2]

Risk management

[2.2.3, 2.2.4, 2.3.3]

Test cases using a

range of security test

strategies [1] [6]

Use a complement of testing

strategies, including white box testing

(based on deep knowledge of the

source code), black box testing

(focusing on the software’s externally

visible behavior), and penetration

testing (identifying and targeting

specific vulnerabilities at the system

level) [1] [6]

Security requirements/

penetration testing

Security unit testing

(white box)

Security integration

testing

Security functional

testing

Code coverage analysis

Black box security tools

Testing methods

[6.2.1, 6.3.5]

Assurance for

CMMI, engineering

[18]

Establish and maintain validation and

verification procedures and criteria for

the assurance of selected work

products; analyze results of

assurance validation and verification

activities [18]

Security requirements/

penetration testing

Black box security tools

Validation [3.1.1, 3.1.2,

3.3.1, 3.3.2, 6.2.1]

Testing methods

[6.2.1, 6.3.5]

Secure software

verification,

validation, and

evaluation (V, V, and

E): SwACBK [14]

Assurance cases; testing; dynamic

analysis; static analysis;

measurement; third party V, V, and E;

tool assurance [14]

Security requirements/

penetration testing

Black box security tools

Assurance cases

[3.1.1, 3.1.2]

Measurement [3.2.1,

3.2.2, 3.2.3]

Testing methods

[6.2.1, 6.3.5]

BSIMM domain, Security testing: integrate security in Security QA processes [1.2.2]

65 | CMU/SEI-2010-TR-005

References Brief Description Testing Categories Applicable

Knowledge Units

SSDL Touchpoints

[2]

standard QA processes; black box

security tools; fuzz testing; risk-driven

white box testing, application of

attack model; code coverage

analysis; focuses on vulnerabilities in

construction [2]

requirements/penetration

testing

Security unit testing

(white box)

Fuzz testing

Code coverage analysis

Risk management

[2.2.3, 2.2.4, 2.3.3]

Testing methods

[6.2.1, 6.3.5]

OWASP SAMM,

verification [3]

Security testing: test cases derived

from security requirements;

penetration testing; automation;

security testing integrated with SDLC;

language/application specific risks;

test release gates [3]

Security

requirements/penetration

testing

Security functional

testing

Black box security tools

Testing methods

[6.2.1, 6.3.5]

SAFECode [23] Fuzz testing, penetration testing, third

party assessment; use automated

testing tools (eight listed)

Fuzz testing Testing methods

[6.2.1, 6.3.5]

Phase 4 verification:

Microsoft SDL [4]

Security testing: ensure CAI of

software and data; mitigate threat

model threats; minimize

vulnerabilities; test planning; fuzz

testing; penetration testing;

vulnerability regression testing; data

flow testing; replay testing; input

validation testing; privacy testing [4]

Security push: team-wide focus on

threat model updates, re-evaluate

attack surface, code review, testing,

documentation [4]

Security

requirements/penetration

testing

Fuzz testing

Black box security tools

Threat model [3.1.2,

3.3.1, 3.3.2]

Testing methods

[6.2.1, 6.3.5]

Construction: Bishop

[07]

Unit testing [Section 18.2.2.3] [07] Security unit testing

(white box)

Code coverage analysis

Testing methods

[6.2.1, 6.3.5]

Verification and

Validation: Bishop

[07]

Testing: security testing, integration

and system testing [Sections

18.2.2.4, 19.3.3] [07]

Formal verification [Sections 19.2.4.3,

20.1, 20.3, 20.4] [07]

Security

requirements/penetration

testing

Security integration

testing

Security functional

testing

Black box security tools

Testing methods

[6.2.1, 6.3.5]

Security

engineering, testing:

Anderson [16]

Security testing: code, white box

testing, architecture and

implementation faults (Section

26.2.2.1) [16]

Security

requirements/penetration

testing

Security unit testing

(white box)

Code coverage analysis

Testing methods

[6.2.1, 6.3.5]

Computing

Curriculum Series

[9]

Software quality assurance including

inspection of code and testing [9]

Security requirements/

penetration testing

Testing methods

[6.2.1, 6.3.5]

Computing

Curriculum Series

[11]

Testing and quality assurance [11] Security requirements/

penetration testing

Black box security tools

Testing methods

[6.2.1, 6.3.5]

SwA Pocket Guide

[17]

Improper input validation; improper

encoding or escaping of output;

cleartext transmission of sensitive

information; cross-site request

forgery; error message information

leak; failure to constrain operations

within bounds of a memory buffer;

improper resource shutdown or

Security requirements/

penetration testing

Black box security tools

Testing methods

[6.2.1, 6.3.5]

66 | CMU/SEI-2010-TR-005

References Brief Description Testing Categories Applicable

Knowledge Units

release; improper initialization;

incorrect calculation; use of broken or

risk cryptographic algorithm; insecure

permission assignment for critical

resource; use of insufficiently random

values [17]

ISC
2
 CSSLP [22] Testing for security QA (functional,

security, environment, bug tracking,

attack surface validation) [22]

Security requirements

testing

Security functional

testing

Security unit testing

(white box)

Testing methods

[6.2.1, 6.3.5]

Test types (penetration, fuzzing,

scanning, simulation, cryptographic

validation) [22]

Impact assessment and corrective

action [22]

Standards for software QA [22]

Regression testing [22]

Penetration testing

Fuzz testing

Penetration testing

[5.1.2, 5.2.1, 5.3.2]

Impact assessment

[4.1.4]

67 | CMU/SEI-2010-TR-005

Table 6: Analysis of Software and Services in Static and Operational Contexts

Subject Matter Analysis Artifacts Analysis

Objectives

Technologies and

Methods

Applicable

Knowledge Units

Software Architectures,

requirements,

specifications,

designs, code,

documentation, test

results, threat

environment,

analysis tool output

Assure software

security through

verification of

required functional

and security

behavior and

absence of

malicious content

Reverse engineering

through structuring

and abstraction,

correctness

verification, static

and dynamic

analysis, inspection

and review, security

techniques and

standards, risk

management,

assurance auditing

Verification/risk

management [3.1.2,

3.3.1, 3.3.2]

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4]

Reverse engineering

[6.3.1, 6.3.2, 6.3.3,

6.3.4]

Services Service agreements,

test results,

operational and

threat environments,

operational

performance

Assure service

security through

validation of

required functional

and security

behavior and

absence of

malicious behavior

Testing, operational

monitoring, security

techniques and

standards, risk

management,

assurance auditing

Validation/risk

management [3.1.1,

3.1.2, 3.3.1, 3.3.2,

6.2.1, 6.4.1, 6.4.2]

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4]

Testing methods

[6.2.1, 6.3.5]

Data Databases, access

methods and

controls

Assure data security

through validation of

access controls and

security properties

Operational

monitoring, security

techniques and

standards

Operational

monitoring, security

techniques and

standards [5.2.3,

7.2.1, 7.2.2, 7.2.3,

7.2.4]

Validation [3.1.1,

3.1.2, 3.3.1, 3.3.2]

Networks Architectures,

requirements,

specifications,

designs, test results,

threat environment,

operational

monitoring tools

Assure network

security through

validation of security

capabilities and

operational

performance

Flow analysis,

operational

monitoring,

simulation, statistical

analysis, failure

analysis, security

techniques and

standards, risk

management,

assurance auditing

Flow analysis,

operational

monitoring,

simulation, statistical

analysis, failure

analysis, security

techniques and

standards, risk

management,

assurance auditing

[5.2.2, 7.2.1, 7.2.2,

7.2.3, 7.2.4]

Validation/risk

management [3.1.1,

3.1.2, 3.3.1, 3.3.2]

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4, 7.1.1]

Humans Qualifications

training, job

performance,

management

Assure human

performance in

achieving

operational and

security goals

Training programs,

performance

monitoring, insider

threat analysis

Threat analysis

[3.1.2, 3.3.1, 3.3.2]

Operations Operational

performance, threat

Assure operational

integrity and

Operational

monitoring, threat

Operational

monitoring, threat

68 | CMU/SEI-2010-TR-005

Subject Matter Analysis Artifacts Analysis

Objectives

Technologies and

Methods

Applicable

Knowledge Units

environment,

intrusion detection,

issues and

problems, new

requirements,

maintenance,

updates and

patches

continuity through

network and system

management

tracking,

vulnerability

elimination,

maintenance

planning and

implementation,

continuity planning

and preparation, risk

management

tracking,

vulnerability

elimination,

maintenance

planning and

implementation,

continuity planning

and preparation, risk

management [5.2.2,

5.2.3, 4.1.2, 4.1.4,

7.2.1, 7.2.2, 7.2.3,

7.2.4]

Threat

tracking/vulnerability

elimination/risk

management [3.1.1,

3.1.2, 3.3.1, 3.3.2]

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4]

Continuity [3.2.4,

4.1.4, 7.3.1, 7.3.2]

Incremental

development [6.2.1]

User training [7.1.3]

Maintenance [7.2.3]

69 | CMU/SEI-2010-TR-005

Table 7: Assembly, Evolution, and Deployment

References Brief Description Category Applicable

Knowledge Units

Bracketed numbers

refer to the

references at the

end of Appendix B.

 Incremental development

and evolution

Incremental

development and

evolution [1.1.1, 1.1.2,

1.1.3, 6.2.1]

System integration

System integration

[6.2.1]

User training User training [7.1.3]

Maintenance and

patching

Maintenance and

patching [6.2.3]

System monitoring and

management

System monitoring and

management [5.2.1,

5.2.2, 7.2.1, 7.2.2,

7.2.3, 7.2.4, 7.3.1,

7.3.2]

Analysis of existing

artifacts [Table 6]

Analysis of architectures,

requirements, specifications, designs,

code, test results, threat environment,

vulnerabilities, security properties,

service agreements, data access

controls, monitoring results, training,

job performance

Technologies and

methods

 Threat,

vulnerability, and

security

assessment

 Requirements,

specifications,

architecture,

documentation, and

code analysis

 Flow and service

analysis

 Reverse

engineering

 Verification and

testing of security

and functionality

 Application of

standards and

practices

Applied to

 software, services,

data, networks,

humans, and

operations

For system types

 systems, systems-

of-systems,

distributed systems,

SOA and cloud

systems,

infrastructure

systems, embedded

systems

Threat, vulnerability,

and security

assessment [3.1.2,

3.3.1, 3.3.2]

Service agreements

[6.4.1, 6.4.2]

Artifact analysis [7.2.4]

Operational monitoring

[7.2.1, 7.2.2]

Requirements,

specifications,

architecture,

documentation, and

code analysis [6.3.2,

6.3.2, 6.3.3, 6.3.4,

6.3.5]

Flow and service

analysis [6,2,1, 6.3.1,

6.3.4]

Reverse engineering

and analysis [6.3.1,

6.3.2, 6.3.3, 6.3.4]

Verification and testing

[6.2.1, 6.3.5]

Analysis

technologies [Table

6]

Reverse engineering, structuring,

function abstraction, correctness

verification, flow analysis, test design

and evaluation, statistical analysis,

capabilities and limitations of static

and dynamic analysis and monitoring

tools and intrusion detection tools,

risk management, assurance auditing

Technologies and

methods

 Threat,

vulnerability, and

security

assessment

 Requirements,

Threat, vulnerability,

and security

assessment [3.1.2,

3.3.1, 3.3.2]

Verification/risk

management/

assurance auditing

[3.1.1, 3.1.2, 3.3.1,

70 | CMU/SEI-2010-TR-005

References Brief Description Category Applicable

Knowledge Units

specifications,

architecture,

documentation, and

code analysis

 Flow and service

analysis

 Reverse

engineering

 Verification and

testing of security

and functionality

 Application of

standards and

practices

Applied to

 software, services,

data, networks,

humans, and

operations

For system types

 systems, systems-

of-systems,

distributed systems,

SOA and cloud

systems,

infrastructure

systems, embedded

systems

3.3.2]

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4]

Analysis technologies

[all of 6 and 7]

SAFECode [23] Documentation for administrators’

security configuration settings and the

security and usability implications of

those settings [23]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

System monitoring and

management

System monitoring

[7.2.1, 7.2.2, 7.2.3]

User training User training [7.1.3]

ISC
2
 CSSLP [22] Software acceptance [22]

Pre-release or pre-deployment:

completion criteria, risk acceptance,

documentation [22]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

Post-release: verification and

validation; independent testing [22]

System monitoring and

management

Risk acceptance

[3.1.1, 3.1.2, 3.3.1,

3.3.2]

Risk acceptance

[2.2.3, 2.2.4, 2.3.3]

Acceptance [6.3.5,

6.3.6, 6.4.1, 6.4.2]

SAFECode [24] Ensure the presence of the software

supply chain (supplier sourcing,

product development and testing,

product delivery) integrity controls

that derive from security and integrity

principles: chain of custody, least

privilege access, separation of duties,

tamper resistance and evidence;

persistent protection, compliance

management, code testing and

verification [24]

Incremental development

and evolution

Supply chain

assurance [5.1.4,

6.3.5, 6.3.4, 6.4.1,

6.4.2]

Compliance [4.3.1,

4.3.1, 4.3.3]

71 | CMU/SEI-2010-TR-005

References Brief Description Category Applicable

Knowledge Units

SAFECode [23] Code integrity and handling: keep

source code in well-protected source

code control systems; verify chain of

custody for the origin of software

changes; protect against code

tampering (active, at rest, in transit);

monitor and analyze event and audit

logs; sign code to verify integrity and

authenticity; resolve bugs promptly

and continuously

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

Project management

[4.2.1, 4.2.2]

Security during

software

maintenance: JMU

[6]

Particularly security-oriented

procedures/ techniques for use when

revising/enhancing legacy software

[6]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

Maintenance and

patching

Maintenance [7.2.3]

Incident

management: Build

Security In (BSI) [26]

Role of (computer security incident

response team) CSIRT in SDLC,

CSIRT definition, incident

management [26]

System monitoring and

management

System monitoring and

management [7.2.1,

7.2.3, 7.2.4, 7.3.1,

7.3.2]

Deployment and

operations: BSI [26]

Plan, Do, Check, Act, Integrating

Security and IT, Prioritizing IT

Controls, Navigating the Security

Process Landscape [26]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4]

Project management

[4.2.1, 4.2.2]

Process landscape

[1.2.1, 1.2.2]

Secure software

sustainment:

SwACBK [14]

Monitoring for situational awareness

(sensing); analysis; response

management; update assurance

cases [14]

User training

Assurance cases

[3.1.2, 6.3.6]

User training [7.1.3]

System monitoring and

management

Operational monitoring

[7.2.1, 7.2.2, 7.3.1,

7.3.2]

BSIMM domain,

deployment [2]

Penetration testing: focuses on

outside/in testing, vulnerabilities in

final configuration; supports defect

management and mitigation [2]

Incremental development

and evolution

System integration

User training

System monitoring and

management

Incremental

development and

evolution [5.1.4]

System integration

[6.2.1]

User training [7.1.3]

System monitoring and

management [7.2.1,

7.2.3, 7.2.4, 7.3.1,

7.3.2]

Testing [6.2.1, 6.3.5]

Software environment: OS and

platform patching; web application

firewalls; installation and

configuration documentation;

application monitoring; change

management; code signing [2]

Configuration management and

vulnerability management: patching

and updating applications; version

control; defect tracking and

remediation; incident handling [2]

OWASP SAMM,

deployment [3]

Vulnerability management: incident

response plan/team/process; security

issue disclosure; root cause analysis;

incident metrics

Environment hardening: install

upgrades; patch management;

monitor configuration; validate

environment against best practices;

audit

Operational enablement: application

alert procedures; change

management; operational security

Maintenance and

patching

Process [1.2.2]

Maintenance [7.2.3]

System monitoring and

management

System monitoring and

management [7.2.1,

7.2.3, 7.2.4, 7.3.1,

7.3.2]

72 | CMU/SEI-2010-TR-005

References Brief Description Category Applicable

Knowledge Units

procedures; code signing; audit [3]

Release: Microsoft

SDL [4]

Final security review; final privacy

review; response planning

(vulnerability discovery; zero-day

exploits); release permission

dependent upon completing the

defined SDLC process; respond to

vulnerabilities/issues as they arise

Incremental development

and evolution

Incremental

development and

evolution [5.1.4,6.2.1]

SDLC [1.1.2, 1.2.1,

1.2.2]

System integration System integration

[6.2.1]

Legacy systems:

BSI [26]

Assessing risk, COTS software

security considerations [26]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

Assessing risk [2.2.1,

2.2.2, 2.3.1, 2.3.2,

3.1.2, 3.3.1, 3.3.2]

System integration System integration

[6.2.1]

Maintenance and

patching

Maintenance [7.2.3]

Assembly and

evolution: BSI [26]

Application firewalls and proxies,

patch management, web service

integration [26]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

System integration System integration

[6.2.1]

Maintenance and

patching

Maintenance [7.2.3]

Operation and

maintenance:

Bishop [7]

Auditing (Chapter 14) [7]

Intrusion detection (Chapter 23) [7]

Maintenance and

patching

Maintenance [7.2.3]

System monitoring and

management

Operational monitoring

[7.2.1, 7.2.2]

Attack and defense:

JMU [6]

Attack and defense during operation

[6]

System monitoring and

management

Operational monitoring

[7.2.1, 7.2.2]

Computing

Curriculum Series

[10]

Security operations considerations in

professional practice; might be more

closely associated with deployment of

software [10]

Maintenance and

patching

Maintenance [7.2.3]

User training User training [7.1.3]

System monitoring and

management

Operational monitoring

[7.2.1, 7.2.2]

ISC
2
 CSSLP [22] Deployment, operations,

maintenance, disposal [22]

Installation and deployment:

bootstrapping (key generation,

access management); configuration

management [22]

Systems integration

System monitoring and

management

Systems integration

[6.2.1]

Operational monitoring

[7.2.1, 7.2.2]

User training [7.1.3]

Operations and maintenance:

monitoring, incident management;

problem management; patching [22]

End-of-life policies [22]

System monitoring and

management

Operational monitoring

[7.2.1, 7.2.2]

User training [7.1.3]

Maintenance and

patching

Maintenance [7.2.3]

73 | CMU/SEI-2010-TR-005

Table 8: Risk Mitigation Strategies for System Complexity and Scale

References Brief Description Category Applicable

Knowledge Units

Bracketed numbers

refer to the

references at the

end of Appendix B.

 Incremental development

and evolution
Incremental

development and

evolution [5.1.4, 6.2.1]

Systems integration System integration

[6.2.1]

User training User training [7.1.3]

Maintenance and

patching
Maintenance and

patching [7.2.3]

System monitoring and

management

System monitoring and

management [7.2.1,

7.2.2]

Tackle known

interface

vulnerabilities first [1]

With systems having more interfaces

to less trusted systems, developers

should concentrate first on known

interface vulnerabilities such as those

in web services. [1]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

System integration System integration

[6.2.1]

Conduct end-to-end

analysis of cross-

system work

processes [1]

With increasing complexity,

vulnerability analysis of individual

systems is not sufficient. The security

analysis of work processes that cross

multiple systems has to consider the

risks for those processes (including

end-to-end analysis) as well as the

risks that each work process creates

for the systems that support it.

Security analysis has to consider a

wider spectrum of errors. [1]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

Processes [1.2.1]

Risk analysis [2.2.1,

2.2.2, 2.3.1, 2.3.2,

3.1.2, 3.3.1, 3.3.2]

System integration System integration

[6.2.1]

Attend to containing

and recovering from

failures [1] [6]

Assume the existence of

discrepancies of some form, whether

in systems, operations, or users,

during the execution of work

processes, particularly as usage

evolves. Give increased attention to

containment and recovery from

failures. These should be considered

in the context of business continuity

analysis. [1] [6]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

Processes [1.2.1]

Continuity [3.2.4, 4.1.4,

7.3.1, 7.3.2]

System integration System integration

[6.2.1]

Explore failure

analysis and

mitigation to deal

with complexity [1]

The multiplicity of systems and the

increasing number of possible error

states arising from their interactions

can overwhelm analysis or generate

too many point solutions that mitigate

narrowly specified events. Explore

how security could take advantage of

a consolidated failure analysis and

mitigation effort. [1]

System integration System integration

[6.2.1]

Maintenance and

patching

Maintenance [7.2.3]

System monitoring and

management

Operational monitoring

[7.2.1, 7.2.2]

Coordinate security

efforts across

organizational

groups [1]

Security is typically treated as a

separate concern, with responsibility

often assigned to independent parts

of the organization. It is not unusual

to find that an organization’s

development, operational, and

business groups are tackling common

problems with little coordination, or

that some security problems have

fallen through the cracks. This

User training User training [7.1.3]

System monitoring and

management

Operational monitoring

[7.2.1, 7.2.2]

Vulnerability analysis

[3.1.2, 3.3.1, 3.3.2]

74 | CMU/SEI-2010-TR-005

References Brief Description Category Applicable

Knowledge Units

separation is even more problematic

as the scope and scale of systems

expand. Vulnerability analysis and

mitigations should be integrated

across organization units, users,

technology, systems, and operations.

[1]

Certification and

accreditation: JMU

[6]

Mainly concerning systems and

software but some attention given to

personnel certification and meeting

CNSS requirements [6]

Incremental development

and evolution

Incremental

development and

evolution [5.1.4, 6.2.1]

User training User training [7.1.3]

75 | CMU/SEI-2010-TR-005

Table 9: Governance and Management Practices

References Brief Description Category Applicable

Knowledge Units

Bracketed numbers

refer to the

references at the

end of Appendix B.

 Business case

Business case [4.1.1,

4.1.2, 4.1.3, 4.1.4,

7.1.1, 7.1.2]

Risk management

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4, 3.1.1, 3.1.2,

3.3.1, 3.3.2, 7.1.1]

Awareness

Awareness [part of all

KUs; 5.1.2]

Business case

(awareness for

business leaders)

[4.1.1, 4.1.2, 4.1.3,

4.1.4]

Training, education,

certification

Training, education,

certification [1.2.1,

7.1.3]

Project management

(process management)

Project management

[1.1.1, 1.2.2, 4.2.1,

4.2.2, 7.1.1, 7.1.2]

SwA practices integrated

with SDLC

SwA practices/process

[1.1.1, 1.1.2, 1.1.3,

1.2.1, 1.2.2, 6.2.1,

7.1.2]

Transition and adoption

Adoption [1.1.1, 1.1.2,

1.2.1, 1.2.2, 7.1.1]

Measurement

Measurement [1.2.2,

3.2.1, 3.2.2, 3.2.3,

6.3.6]

Ethics Ethics [5.3.1]

Compliance Compliance [4.3.1,

4.3.2, 4.3.3, 6.3.6]

Evaluation (systems,

software, people)

Evaluation [3.1.2,

3.3.1, 3.3.2, 5.2.4,

6.1.1, 6.3.1, 6.3.2,

6.3.3, 6.3.4, 6.3.5,

6.3.6]

Acquisition Acquisition [1.1.3,

1.2.1, 1.2.2, 6.4.1,

6.4.2]

Business case [5] Present economic and additional

arguments that describe the need for

software assurance and the impact of

its absence: ROI, cost-benefit,

models, vendor measurement, SIDD

[5, other BSI]

Business case Vendor measurement

[3.2.1, 3.2.2, 3.2.3]

Business case [4.1.1,

4.1.2, 4.1.3, 4.1.4,

7.1.1]

Phase 1

requirements:

Microsoft SDL [4]

Determine if developmental and

support costs for improving security

and privacy are consistent with

business needs [4]

Business case Business case [4.1.1,

4.1.2, 4.1.3, 4.1.4,

7.1.1]

CMU—Heinz [21] Analytical tools for calculating the

costs and benefits of investment

security decisions and how to

calculate the return on investments in

a hands-on setting; commercially

Business case, risk

management

Risk management

[3.1.1, 3.1.2, 3.3.1,

3.3.2]

Risk management

[2.2.1, 2.2.2, 2.2.3,

76 | CMU/SEI-2010-TR-005

References Brief Description Category Applicable

Knowledge Units

available tools for risk management;

introduction to vulnerability

management; risk aversion and

insurance [21]

2.2.4]

Business case [4.1.1,

4.1.2, 4.1.3, 4.1.4,

7.1.1]

Risk-based

definition of

adequate security

[1]

Identify ways to determine what

constitutes adequate security practice

based on risk management,

established levels of risk tolerance,

and risk assessment [1]

Risk management Risk management

[3.1.1, 3.1.2, 3.3.1,

3.3.2, 7.1.1]

Adequate security

practice [2.2.3, 2.3.4]

Continuous risk

management

framework [1] [6]

Put a continuous, business-driven

risk management framework in place

and periodically assess for

acceptable and unacceptable levels

of risk throughout the SDLC [1] [6]

Risk management Risk management

[3.1.1, 3.1.2, 3.3.1,

3.3.2]

Risk management

[2.2.1, 2.2.2, 2.2.3,

2.2.4, 7.1.1]

OWASP SAMM,

governance [3]

Strategy and metrics: business risk

profile; assurance roadmap;

data/application classification; align

investment with asset value

Risk management,

business case, SwA

project management

Risk management

[3.1.1, 3.1.2, 3.3.1,

3.3.2, 7.1.1]

Risk profile [2.2.1,

2.2.2]

Business case [4.1.1,

4.1.2, 4.1.3, 4.1.4]

Project management

[4.2.1, 4.2.2]

CMU—Heinz [21] The role of market and competition

on security provision and then some

of the key causes of market failure,

namely externalities, how various

policy tools can be applied to mitigate

market failure, key laws and

regulation on product liability, and

security standards [21]

Risk management,

compliance

Risk management

[3.1.1, 3.1.2, 3.3.1,

3.3.2, 7.1.1]

Risk management

[2.2.1, 2.2.2, 2.2.3,

2.2.4]

Compliance [4.3.1,

4.3.1, 4.3.3]

Software security as

a cultural norm [1]

[6]

Recognize that being aware of

security and understanding the

importance of addressing security

during software development needs

to be a cultural norm (beliefs,

behaviors, capabilities, actions) [1] [6]

Awareness Awareness [5.1.2]

Characteristics of

software security at

the governance/

management level

[1]

Engage leaders and stakeholders to

better appreciate and understand the

characteristics and actions necessary

to address software security as

governance and management

concerns, and the consequences of

not doing so [1]

Awareness Business case [4.1.1,

4.1.2, 4.1.3, 4.1.4]

Assurance for

CMMI, training [18]

Establish and maintain strategic

assurance training needs of

organization [18]

Training Training [7.1.3]

Pre-SDL

requirements,

security training:

Microsoft SDL [4]

In security requirements, secure

design, threat modeling, secure

coding, security testing, privacy [4]

Training Training [7.1.3]

BSIMM domain,

governance [2]

Training of software developers and

architects [2]

Training Training [7.1.3]

OWASP SAMM,

governance [3]

Education and guidance of software

developers, all personnel on secure

SDLC based on role; comprehensive

training and certification [3]

Training Training [7.1.3, 1.2.1]

77 | CMU/SEI-2010-TR-005

References Brief Description Category Applicable

Knowledge Units

Assurance for

CMMI, project

management [18]

Define project objectives for

assurance; define the scope of

assurance for the product or service;

identify and analyze assurance-

related project risks; ensure that

adequate resources to execute

assurance plans are provided;

monitor assurance risk; select

suppliers based on an evaluation of

their ability to meet assurance

requirements and criteria; document

supplier agreement for assurance;

define and select risk management

strategy due to vulnerabilities and

safety hazards [18]

SwA project

management

Project management

[4.2.1, 4.2.2]

Risk analysis [2.2.1,

2.2.2, 2.2.4,, 2.3.1,

2.3.2, 7.1.1]

Security

engineering,

management:

Anderson [16]

Project management: security

projects, risk management,

organizational issues, process

assurance (Section 25.2, 25.5, 25.6,

26.2.3) [16]

Security evaluation: relying on third

party evaluation, common criteria

evaluation, protection profile (Section

26.3) [16]

SwA project

management

Project management

[4.2.1, 4.2.2]

Process [1.1.1, 1.1.2,

1.1.3, 1.2.1]

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4, 7.1.1]

Evaluation [3.1.2,

3.3.1, 3.3.2, 6.3.1,

6.3.2, 6.3.3, 6.3.4,

6.3.5, 6.3.6]

Secure software

project

management:

SwACBK [14]

Start up; scoping; risk management;

SDLC selection; configuration

management; software QA for

security [14]

SwA project

management

Project management

[4.2.1, 4.2.2]

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4. 7.1.1]

BSIMM domain,

governance [2]

Strategy and metrics: planning;

assigning roles and responsibilities;

identifying software security goals;

determining budgets; identifying

metrics and gates [2]

SwA project

management;

measurement

Project management

[4.2.1, 4.2.2]

Measurement [3.2.1,

3.2.2, 3.2.3, 6.3.6]

Software security

practices integrated

with SDLC [1] [6]

Provide recommendations for

inserting security practices into the

SDLC as part of traditional project

management activities, including the

use of defined security touchpoints at

each life-cycle phase [1] [6]

Integrate with SDLC Project management

[4.2.1, 4.2.2]

Management [1.1.1,

1.2.2, 7.1.1]

Secure software

processes: SwACBK

[14]

Heavyweight; lightweight; legacy

upgrade; introducing and improving

security practices as part of SDLC

[14]

Integrate with SDLC Processes [1.1.1,

1.1.2, 1.1.3, 1.2.1,

1.2.2, 7.1.2]

BSIMM domain,

governance [2]

Standards and requirements:

recommend COTS; develop

standards for security controls

(authentication, input validation, etc.);

develop standards for technologies in

use; create standards review board

[2]

Integrate with SDLC Requirements [6.2.1]

Enterprise software

security framework

[1]

Establish a framework and roadmap

for addressing software security as

an enterprise-wide undertaking and

identify some of the pitfalls and

Adoption: framework Adoption [1.2.2, 7.1.1]

78 | CMU/SEI-2010-TR-005

References Brief Description Category Applicable

Knowledge Units

barriers to tackle head on [1]

Assurance for

CMMI, process

management [18]

Establish and maintain: description of

assurance context and objectives for

the organization; organizational

processes to achieve assurance

business objectives; tailoring criteria

and guidelines for assurance in

organization’s set of standard

processes; assurance of

organization’s work environment

based on the organization’s work

environment standards [18]

Adoption: process

management

Processes [1.1.1,

1.1.2, 1.2.1, 1.2.2,

7.1.2]

Software security

included in software

development

measurement

process [1] [6]

Determine how to include security as

part of a software development

measurement process, including

suggested process and product

measures, and implement, track, and

report such measures [1] [6]

Measurement Measurement [3.2.1,

3.2.2, 3.2.3,]

Measurement [6.3.6]

Process [1.2.2, 7.1.2]

Assurance for

CMMI, support [18]

Define and improve project

assurance measures; store

assurance measures appropriately

[18]

Measurement Measurement [3.2.1,

3.2.2, 3.2.3]

Measurement [6.3.6]

Ethics, law, and

governance:

SwACBK [14]

Ethics, laws, regulations, policy,

standards [14]

Ethics Ethics [5.3.1]

Compliance Compliance [4.3.1,

4.3.2, 4.3.3]

Ethics, legal, policy,

and standards

considerations: JMU

[6]

Overview of ethical and compliance

sources; requirements and issues [6]

Ethics Ethics [5.3.1]

Compliance Compliance [4.3.1,

4.3.2, 4.3.3]

BSIMM domain,

governance [2]

Compliance and policy: identifying

controls for compliance with specific

regulations, such as PCI, HIPAA;

developing contractual controls

(SLAs); setting organizational

software security policy; auditing

against policy [2]

Compliance Compliance [4.3.1,

4.3.2, 4.3.3]

Measurement [6.3.6]

OWASP SAMM,

governance [3]

Policy and compliance: build policies

and standards for security and

compliance; establish audit practice;

create compliance gates for projects

Compliance Compliance [4.3.1,

4.3.2, 4.3.3]

Measurement [6.3.6]

Audit [25] Standards and requirements for

software and system security audits

[25]

Compliance Compliance [4.3.1,

4.3.2, 4.3.3]

Measurement [6.3.6]

CMU—Heinz [21] Strategies of various countries to gain

control and secure communication

and information flows in cyberspace,

concepts of security, why information

and network security become a public

policy issue; critical choices policy

makers face in their efforts to develop

strategies to secure cyberspace, how

national governments deal with the

limited reach of territorially bound

rules and regulation in a network of

networks without bounds [21]

Compliance Compliance [4.3.1,

4.3.2, 4.3.3]

Measurement [6.3.6]

Certification and

accreditation: JMU

[6]

Mainly concerning systems and

software but some attention given to

personnel certification and meeting

CNSS requirements [6]

Evaluation Measurement [6.3.6]

79 | CMU/SEI-2010-TR-005

References Brief Description Category Applicable

Knowledge Units

Computing

Curriculum Series

[8]

Defense security implementation and

management: the organizational

activities associated with the

selection, procurement,

implementation and management of

security processes and technologies

for IT infrastructures and applications

[8]

Acquisition Process [1.2.1, 1.2.2]

Acquisition [6.4.1,

6.4.2]

Acquisition [26] Life-cycle considerations; trusted

vendors; systems of systems;

government acquisition; business

(commercial) acquisition [26]

Acquisition Process [1.1.4]

Acquisition [6.4.1,

6.4.2]

Acquiring secure

software: SwACBK

[14]

Planning (need, requirements,

decision to acquire, risk

management); software reuse; RFP

process (acquirer); supplier response

(software architecture; assurance

plan); source selection (evaluation

criteria); contract negotiation [14]

Acquisition Process [1.1.4]

Risk management

[2.1.1, 2.1.2, 2.1.3,

2.2.1, 2.2.2, 2.2.3,

2.2.4, 7.1.1]

Acquisition [6.4.1,

6.4.2]

Appendix B Bibliography

[1]

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software

Security Engineering: A Guide for Project Managers. Addison-Wesley Professional, 2008.

[2]

McGraw, Gary; Chess, Brian; & Migues, Sammy. Building Security In Maturity Model BSIMM

v1.0. http://www.bsi-mm.com/ (March 2008).

[3]

OpenSAMM Project. Software Assurance Maturity Model (SAMM) v1.0.

http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model (2009).

[4]

Microsoft. Security Development Life Cycle, Version 4.1. http://www.microsoft.com/sdl (2009).

The SDL addresses, in separate sections, practices for product software vs. practices for internal

line of business (LOB) software. Only those for product software were reviewed.

[5]

Mead, Nancy R.; Allen, Julia H.; Conklin, Arthur W.; Drommi, Antonio; Harrison, John;

Ingalsbe, Jeff; Rainey, James; & Shoemaker, Dan. Making the Business Case for Software

Assurance (CMU/SEI-2009-SR-001). Carnegie Mellon University Software Engineering Institute,

2009. http://www.sei.cmu.edu/library/abstracts/reports/09sr001.cfm

[6]

James Madison University. Secure Software Engineering Curriculum. Includes independent input

from Sam Redwine. http://www.cs.jmu.edu/SSS/grad_program/curriculum.html (Accessed 2009).

http://www.bsi-mm.com/
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.microsoft.com/sdl
http://www.cs.jmu.edu/SSS/grad_program/curriculum.html
http://www.sei.cmu.edu/library/abstracts/reports/09sr001.cfm

80 | CMU/SEI-2010-TR-005

[7]

Bishop, Matt. Computer Security: Art and Science. Addison-Wesley Professional, 2003.

[8]20

The Association for Computing Machinery (ACM); The Association for Information Systems

(AIS); & The Institute of Electrical and Electronics Engineers Computer Society (IEEE-CS).

―Computing Curricula 2005.‖ Computing Curriculum Series.

http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/CC2005-

March06Final.pdf (2005).

[9]20

IEEE-CS & ACM. ―Computer Engineering.‖ Computing Curriculum Series.

http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/CCCE-FinalReport-

2004Dec12-Final.pdf (2004).

[10]

ACM & IEEE-CS. ―Computer Science Curriculum 2008: An Interim Revision of CS 2001.‖

Computing Curriculum Series.

http://www.acm.org/education/curricula/ComputerScience2008.pdf (2008).

[11] 20

ACM & IEEE-CS. ―Computing Curricula: Information Technology Volume.‖ Computing

Curriculum Series.

http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/IT_draft_curriculum.p

df (2008).

[12]

Gorgone John T.; Davis, Gordon B.; Valacich, Joseph S.; Topi, Heikki; Feinstein, David L.; &

Longenecker, Herbert E., Jr. ―IS 2002: Model Curriculum and Guidelines for Undergraduate

Programs in Information Systems.‖ Computing Curriculum Series. Association for Information

Systems. http://192.245.222.212:8009/IS2002Doc/Main_Frame.htm (2002).

[13]

IEEE-CS & ACM. ―Software Engineering 2004: Curriculum Guidelines for Undergraduate

Degree Programs in Software Engineering.‖ Computing Curriculum Series.

http://sites.computer.org/ccse/SE2004Volume.pdf (2004).

[Not referenced in any practice; included for completeness.]

[14]

Department of Homeland Security (DHS) Software Assurance (SwA) Workforce Education and

Training Working Group. Software Assurance: A Curriculum Guide to the Common Body of

Knowledge to Produce, Acquire, and Sustain Secure Software. Edited by Samuel T. Redwine, Jr.

https://buildsecurityin.us-cert.gov/daisy/bsi/940-

BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf (2007).

20

 Membership is required to access this document.

http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/CCCE-FinalReport-2004Dec12-Final.pdf
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/CCCE-FinalReport-2004Dec12-Final.pdf
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/IT_draft_curriculum.pdf
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/IT_draft_curriculum.pdf
http://sites.computer.org/ccse/SE2004Volume.pdf
https://buildsecurityin.us-cert.gov/daisy/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf
https://buildsecurityin.us-cert.gov/daisy/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/CC2005-March06Final.pdf
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/CC2005-March06Final.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://192.245.222.212:8009/IS2002Doc/Main_Frame.htm

81 | CMU/SEI-2010-TR-005

[15]

Dougherty, Chad; Sayre, Kirk; Seacord, Robert; Svoboda, David; & Togashi, Kazuya. Secure

Design Patterns (CMU/SEI-2009-TR-101, ESC-TR-2009-010). Carnegie Mellon University

Software Engineering Institute, 2009.

http://www.sei.cmu.edu/library/abstracts/reports/09tr010.cfm

[16]

Anderson, Ross J. Security Engineering: A Guide to Building Dependable Distributed Systems,

2
nd

 Edition. Wiley, 2008.

[17]

DHS SwA Processes & Practices Working Group & Technology, Tools and Product Evaluation

Working Group. ―Key Practices for Mitigating the Most Egregious Exploitable Software

Weaknesses,‖ Table 1. Software Assurance Pocket Guide Series: Development, Volume 2,

Version 1.3. Department of Homeland Security Software Assurance Program, March 2009.

https://buildsecurityin.us-cert.gov/swa/downloads/KeyPracticesMWV13_02AM091013.pdf

Other guides in this series include

 ―Contract Language for Secure Software‖

 ―Software Supply Chain Risk Management and Due Diligence‖

 ―Risk-Based Software Security Testing‖

 ―Contract Language for Integrating Software Security in the Acquisition Life Cycle‖

Guides are available at https://buildsecurityin.us-cert.gov/swa/pocket_guide_series.html.

[18]

Material adapted from

 Croll, Paul & Moss, Michele. ―Leveraging CMMs and Standards for Assurance.‖ Paper

presented at the Systems & Software Technology Conference (SSTC) 2008, Las Vegas,

Nevada, Track 6, Wednesday, April 30, 2008.

 Croll, Paul & Moss, Michele. ―Leveraging the CMMI To Address Assurance –

Benchmarking Assurance Practices and Managing Assurance Risks.‖ Paper presented at the

NDIA CMMI Technology Conference 2008, Denver, Colorado, November 19, 2008.

 Moss, Michele & Nadworny, Margaret. ―Update on the Assurance for CMMI Practices.‖

Department of Homeland Security (DHS) Software Assurance Working Group, December 4,

2008.

 DHS SwA. Summary of Assurance for CMMI Efforts. https://buildsecurityin.us-

cert.gov/swa/downloads/Assurance_for_CMMI_Pilot_version_March_2009.pdf (2009).

 DHW SwA. Processes and Practices Working Group.

 https://buildsecurityin.us-cert.gov/swa/procwg.html (2009).

[19]

Teumin, David J. Industrial Network Security. The Instrumentation, Systems, and Automation

Society (ISA), 2004 (ISBN 1556178743).

http://www.sei.cmu.edu/library/abstracts/reports/09tr010.cfm
https://buildsecurityin.us-cert.gov/swa/downloads/Assurance_for_CMMI_Pilot_version_March_2009.pdf
https://buildsecurityin.us-cert.gov/swa/downloads/Assurance_for_CMMI_Pilot_version_March_2009.pdf
https://buildsecurityin.us-cert.gov/swa/procwg.html
https://buildsecurityin.us-cert.gov/swa/downloads/KeyPracticesMWV13_02AM091013.pdf
https://buildsecurityin.us-cert.gov/swa/pocket_guide_series.html

82 | CMU/SEI-2010-TR-005

[20]

Yasar, Ansar-Ul-Haque; Preuveneers, Davy; Berbers, Yolande; & Bhatti, Ghasan. ―Best Practices

for Software Security: An Overview.‖ Proceedings of the 12
th

 IEEE International Multitopic

Conference. Bahria University Karachi, Sindh Pakistan, December 2008.

[21]

Carnegie Mellon relevant courses (URLs accessed in 2009)

 Master of Science in Information Security Technology and Management (MSISTM), The

Information Networking Institute, Carnegie Mellon University.

http://www.ini.cmu.edu/degrees/pgh_msistm/index.html

 Courses in the Information Networking Institute, Carnegie Mellon University.

http://www.ini.cmu.edu/degrees/pgh_msistm/courses.html

 Courses in Master of Science in Information Security Policy and Management, H. John

Heinz III College, Carnegie Mellon University. http://www.heinz.cmu.edu/school-of-

information-systems-and-management/information-security-policy-management-

msispm/index.aspx

 Curriculum of the Information Security Policy & Management (MSISPM) Program, School

of Information Systems & Management, H. John Heinz III College, Carnegie Mellon

University. http://www.heinz.cmu.edu/school-of-information-systems-and-

management/information-security-policy-management-msispm/curriculum/index.aspx

 List of courses in the Information Security Policy & Management (MSISPM) Program,

School of Information Systems & Management, H. John Heinz III College, Carnegie Mellon

University. http://www.heinz.cmu.edu/school-of-information-systems-and-

management/information-security-policy-management-msispm/curriculum/course-

information-BAK/index.aspx

 Course descriptions in the H. John Heinz III College, Carnegie Mellon University.

http://www.heinz.cmu.edu/index.aspx

 Carnegie Mellon University School of Computer Science (SCS) International Software

Research Institute (ISRI) master‘s programs http://mse.isri.cmu.edu/software-

engineering/web1-Programs/index.html

[Content is embedded in courses. Not obvious where it resides.]

[22]21

(ISC)
2
. Certified Secure Software Lifecycle Professional (CSSLP) Candidate Information Bulletin.

http://www.isc2.org/cib/default.aspx (June 27, 2009).

[23]

Software Assurance Forum for Excellence in Code (SAFECode). Fundamental Practices for

Secure Software Development: A Guide to the Most Effective Secure Development Practices in

Use Today. Edited by Stacy Simpson.

http://www.safecode.org/publications/SAFECode_Dev_Practices1108.pdf (2008).

21

 Registration is required to download this document.

http://www.ini.cmu.edu/degrees/pgh_msistm/courses.html
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/index.aspx
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/index.aspx
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/index.aspx
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/index.aspx
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/curriculum/index.aspx
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/curriculum/index.aspx
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/index.aspx
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/curriculum/course-information-BAK/index.aspx
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/curriculum/course-information-BAK/index.aspx
http://www.heinz.cmu.edu/school-of-information-systems-and-management/information-security-policy-management-msispm/curriculum/course-information-BAK/index.aspx
http://mse.isri.cmu.edu/software-engineering/web1-Programs/index.html
http://mse.isri.cmu.edu/software-engineering/web1-Programs/index.html
http://www.isc2.org/cib/default.aspx
http://www.safecode.org/publications/SAFECode_Dev_Practices1108.pdf
http://www.ini.cmu.edu/degrees/pgh_msistm/index.html
http://www.heinz.cmu.edu/index.aspx

83 | CMU/SEI-2010-TR-005

[24]

Software Assurance Forum for Excellence in Code (SAFECode). The Software Supply Chain

Integrity Framework: Defining Risks and Responsibilities for Security Software in the Global

Supply Chain. Edited by Stacy Simpson.

http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf (2009).

[25]

Review comments from Yair Levy at Nova Southeastern University; October 26, 2009.

[26]

DHS SwA. Build Security In. https://buildsecurityin.us-cert.gov/daisy/adm-bsi/home.html (2009).

[27]

Viega, John & McGraw, Gary. Building Secure Software. Addison-Wesley, 2002.

[28]

Seacord, Robert. The CERT C Secure Coding Standard. Addison-Wesley, 2008.

http://www.informit.com/store/product.aspx?isbn=0321563212.

[29]

CERT and Oracle. The CERT Oracle Secure Coding Standard for Java.

https://www.securecoding.cert.org/confluence/display/java/The+CERT+Oracle+Secure+Coding+

Standard+for+Java (2010).

Appendix B Acronyms

ACM

Association for Computing Machinery

API

application programming interface

ARA

architectural risk analysis

BoK

body of knowledge

BSI

Build Security In

BSIMM

Build Security In Maturity Model

CAI

confidentiality, availability, and integrity

CMM

Capability Maturity Model

CMMI

Capability Maturity Model Integration

CMU

Carnegie Mellon University

CNSS

Committee of National Security Systems

COTS

commercial-off-the-shelf

CSIRT

Computer Security Incident Response Team

DHS

Department of Homeland Security

http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf
https://buildsecurityin.us-cert.gov/daisy/adm-bsi/home.html
http://www.informit.com/store/product.aspx?isbn=0321563212
https://www.securecoding.cert.org/confluence/display/java/The+CERT+Oracle+Secure+Coding+Standard+for+Java
https://www.securecoding.cert.org/confluence/display/java/The+CERT+Oracle+Secure+Coding+Standard+for+Java

84 | CMU/SEI-2010-TR-005

DoS

denial of service

HIPAA

Health Insurance Portability and

Accountability Act

IEEE

Institute of Electrical and Electronics

Engineers

IEEE-CS

Institute of Electrical and Electronics

Engineers Computer Society

INI

Information Networking Institute

ISA

Instrumentation, Systems, and Automation

Society

ISC
2
 CSSLP

International Information Systems Security

Certification Consortium, Inc. Certified

Secure Software Lifecycle Professional

ISRI

International Software Research Institute

IT

information technology

JMU

James Madison University

KU

knowledge unit

LOB

line of business

MSISPM

Master of Science in Information Security

and Policy Management

MSISTM

Master of Science in Information Security

Technology and Management

NDIA

National Defense Industrial Association

OS

operating system

OWASP

Open Web Application Security Project

PCI

Payment Card Industry

PD3+C

Privacy by Design, Privacy by Default,

Privacy in Deployment, and

Communications

QA

quality assurance

RFP

request for proposal

ROI

return on investment

SAFECode

Software Assurance Forum for Excellence

in Code

SAMM

Software Assurance Maturity Model

SCS

School of Computer of Science

SD3+C

Secure by Design, Secure by Default, Secure

in Deployment, and Communications

SDL

software development lifecycle (Microsoft)

85 | CMU/SEI-2010-TR-005

SDLC

software development life cycle

SEI

Software Engineering Institute

SIDD

security investment decision dashboard

SLA

service level agreement

SOA

service-oriented architecture

SQL

structured query language

SQUARE

Security Quality Requirements Engineering

SSDL

software security development life cycle

SSTC

Systems & Software Technology

Conference

STRIDE

Spoofing identity, Tampering with data,

Repudiation, Information disclosure, Denial

of service, Elevation of privilege

SwA

software assurance

SwACBK

Software Assurance Curriculum Body of

Knowledge

V, V, and E

verification, validation, and evaluation

86 | CMU/SEI-2010-TR-005

Appendix C: Interview Questionnaire Summary

The questionnaire and responses are presented here in their original state and have been edited

only to correct misspellings.

Interview Questions

The purpose of this questionnaire is to assist in the development of a curriculum model for a

Master of Software Assurance degree (a project led by the Software Engineering Institute and

sponsored by the Department of Homeland Security).

For the purpose of this project, software assurance is defined as: ―…the level of confidence that

software is free from vulnerabilities, either intentionally designed into the software or accidentally

inserted at any time during its life cycle, and that the software functions in the intended manner‖

(from CNSS 4009 IA Glossary).

We appreciate your willingness to help in our effort to better prepare software assurance and

security professionals for the workplace. Please respond to the questions below and feel free to

elaborate on your answers with additional comments.

1. Assume you are interviewing to fill a position for a specialist in software assurance or software

security. Please rate, with a checkmark, each of the following capabilities you might

consider in hiring such an individual. We would like you to provide responses using two

ways of rating these capabilities:

 how you currently rate such capabilities for a prospective employee regardless of their

academic background and experience (Current)

 how you would rate a prospective employee that had a master‘s degree with a focus on

software assurance (MSwA). Of course, you may decide to rate them the same.

<Note: These are totally different positions – there is virtually no overlap for them. It’s like

saying you can hire a plumber or a baker. Where is the common ground? A specialist in software

security is a FUNCTIONAL expert – e.g., a product manager or developer in identity

management or in cryptography or in database security. Software assurance experts are not

product specialists – they are orthogonal. The skill sets have virtually no overlap in our

organization.>

Also, you are creating a dichotomy between “hiring a person for a software assurance positions”

and “hiring a MSwA for an assurance position.” There is no such dichotomy. I’d hire anybody

qualified for an assurance position whether or not they had a master’s in it. Also, there are few

“assurance positions” as we define them that are interchangeable. Assurance to us includes

everything from security evaluators to program managers to ethical hackers – all very different

skill sets.

Please rate, with a checkmark, each of the following capabilities you might consider in hiring

such an individual. We would like you to provide responses using two ways of rating these

capabilities:

87 | CMU/SEI-2010-TR-005

Capability:

Think like an attacker in understanding and analyzing intruder motivations and methods, threat

environments, and vulnerabilities for new and existing software systems. Be capable of

introducing appropriate security technologies and methods, and verifying software functionality

for conformance to requirements and absence of malicious content.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

X
-

Comments:

 These could be separate capabilities – and would have been rated differently if they weren‘t

combined.

 Both offensive and defensive skills, knowledge, and abilities are now required on your team

of developers or accreditors/certifiers. The ability to hack, embed-n-wait, actively bring

down a system or system-of-systems is the ―attacker‖ skill set – you would necessarily pair

these folk with ―defenders‖. You are mixing both in this paragraph to the left – without using

the terms explicitly.

 It is imperative that someone that is going to protect something knows just how to attack it.

This not only means a great facility with the ―tools‖ but with a demonstrated ability to think

―out of the box‖ with both attack vectors and ―defense in depth‖ solutions.

 This is an essential skill for pen testers and security professionals.

 Thinking like an attacker is a critical component of ―software assurance.‖ The total set of

competencies listed under ―capability‖ would only be something we‘d expect of a very

senior candidate – with or without a MSwA degree. Verifying software functionality for

conformance to requirements in general goes well beyond the security definition of software

assurance – one would normally focus only on resistance to attack and freedom from

malicious content except in the case of specific security mechanisms.

 To think like an attacker is of more value in high value targets such as classified software

development or systems. When software is exploited it seems to be the same type of attacks,

88 | CMU/SEI-2010-TR-005

such as buffer overflow. If you‘re attacking a network you scan for the types of software is

being used on the network and on the nodes. From that point, the attacker can diagnose how

they want to continue. Basic security measures, such as virus protection, patches, and

standard desktop security measures can prevent almost all attacks.

 The second part I believe is more important. The ability to properly diagnose and implement

the appropriate security measures is paramount to proper security implementation. Making

sure the software does what it is supposed to do and that it‘s free of malicious code is a good

first step.

 An MSwA should have training in thinking like an attacker. However, some people are just

naturally better at this than others. Expertise in this area will come from seeing the actual

attacks that happen.

 My rationale is that, if someone had MSwA on their resume, they would be expected to have

this capability, while I would not expect it in the average programmer.

 I can‘t comment since sentence one and sentence two are totally different skills. Security

technologies and methods exist as feature sets independent of ―think like an attacker.‖ I

expect EVERY developer to think like a hacker whether or not they work on security

features. Unfortunately, they do not – we have to train them to do it. By falsely creating a

―hire a security person or an assurance person,‖ it creates a dichotomy that does not exist

because the skills sets are non-comparable and the positions are not interchangeable. Also,

every development manager has to be able to ―verify software functionality for conformance

to requirements.‖ I would never, ever have a ―assurance person‖ validate every piece of code

– it would be unworkable and unscalable. Lastly, ―absence of malicious content‖ is not

possible to prevent and code review will not catch these. Let‘s not kid ourselves.

 While it would be desirable to employ someone today with these capabilities, except in

limited cases, this still remains absent in most curricula. While I would expect the

capabilities in someone with a MSwA, it would actually be nice if there was at least some

exposure to the skills in all curricula aimed at educating developers whether at the Bachelors

or Masters level.

 90% of security problems are exploits of well-known vulnerabilities or gaps in process.

Creative attack analysis is icing on the cake, not the foundation.

 I have found that this skill perhaps above all others is the most applicable to build credible

threat models. Most curriculums in IT teach people how to build systems/programs, but very

few look deeply at what happens when they fail or are induced to fail.

 The answers to all of these items are relative to new employees fresh out of an undergraduate

program or an MSwA program. The assumption is that they have no experience beyond

internship.

89 | CMU/SEI-2010-TR-005

Capability:

Identify and integrate software assurance practices and technologies into all phases of the

software development life cycle. Perform risk and tradeoff analysis subject to project constraints

to optimize security properties and functional correctness in new system development and legacy

system evolution.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

Comments:

 This is where it would probably become necessary to segregate MSwA graduates into those

that concentrated on security implementations, detection and protections and those that were

more oriented in the software design and development areas (assurance).

 Most of times we observe this type of skills come from practices. While individuals educated

on these topics have a head start, proven hands-on experience is the differentiator.

 I rate this list of capabilities ―nice to have‖ for the same reason that I questioned the set of

competencies listed above: we have hundreds of people who work in various aspects of

software security and software assurance, but only a few bring this total set of capabilities.

And I find it inconceivable that any newly graduated MSwA holder would actually have

such capabilities although I suppose that a ―no hire‖ candidate might believe he or she did.

 For a current employee, I would look for a solid software quality engineering background.

The MSwA should be trained in software quality engineering principles. You have to

understand software quality practices before you can apply security practices and

technologies.

 Being able to perform risk and tradeoff analysis is very important. Training in risk

frameworks related to software assurance would be beneficial.

 As software security begins to be more of a reflex than an afterthought in the development

lifecycle this capability may be your most important ability.

 Near term budgets for security will be limited and shrinking as the project moves along. The

ability to understand the value of what needs to be protected and negotiating a minimum

level security is key.

 I am not sure what you mean by security property.

90 | CMU/SEI-2010-TR-005

 Also, when you talk about lifecycle phases, I wonder if you mean to include source code

control. This is a capability that not many programmers have before being trained on the job.

 Again, sentence 1 and 2 should be evaluated separately. I‘d expect any person who worked

as a development manager or release manager to be able to do 1 – but realize, as assurance is

a ―process overlay‖ has to be imposed through, say, release management. You can‘t hire one

person who knows assurance and expect anything positive from that unless that person is in

program management. Risk and tradeoff analysis I expect every developer to do since

security is ONE factor in ALL development projects even if it is not a security feature or

security product. So is performance, for example. Any organization with a decent process

will include security as a boilerplate part of their design documents.

 The earlier practices and tech are introduced, the stronger the probability that they are

incorporated.

 This is core requirement for software assurance.

91 | CMU/SEI-2010-TR-005

Capability:

Apply analysis methods and technologies, such as assurance cases, to measure and validate the

effectiveness of practices in achieving desired system security and functionality.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

Comments:

 This would be necessary to not only keep up with the designs currently in use but also to try

to keep ahead of emerging threats.

 Note that, at the current state of the art, an intent to apply ―assurance case‖ to software

security would qualify a candidate as a ―no hire‖ since assurance case is still a theoretical

approach that, to our knowledge (and that of John Goodenough) has not been applied in the

real world. I would expect a MSwA to understand threat modeling and other proven

approaches to security analysis and to understand why no real world project should attempt

to apply assurance case at its current state of maturity.

 Need to be able to measure your security processes and practices.

 I would expect an MSwA to also be able to apply ―abuse‖ cases as described by McGraw in

Software Security.

 I don‘t know what an assurance case is – we do not use that language. Assurance is Not

Equal to ―desired system security and functionality.‖ The capability is only important in

people who work in assurance positions and even then, only limited positions – e.g.,

assurance also includes positions such as security evaluators and vulnerability analysts –

while the capability is important for a ―pure assurance‖ or ―program management‖ function,

there are many positions for which it is not relevant nor required. Nobody would hire this

capability for a product manager or development manager, for example.

92 | CMU/SEI-2010-TR-005

 Rated as ―Desired‖ without the MSwA as I would expect most graduates to be able to apply

test cases and would hope they could at least have some fundamental understanding of

security needs.

 If this means ―testing‖ then yes!

93 | CMU/SEI-2010-TR-005

Capability:

Apply assurance technologies and methods across a spectrum of systems, including systems-of-

systems, network systems, infrastructure and embedded systems, and service-oriented and cloud

computing environments.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

Comments:

 Although it would be nice to have this as a requirement for an MSwA graduate, this level of

sophistication is really a doctoral level skill-set.

 Only a very experienced and capable candidate would be expected to bring this breadth of

capability, and only a very few positions require it. Again, I‘d be dubious if a newly

graduated MSwA claimed this level of competence.

 An area that has proven to lie outside the line of sight of most security measures is the large

multi-agency and in the future more cloud computing environments. Knowing you must do

more than give lip service or send a security policy to your customers and business partners

that use your systems. You must ensure they‘re taking the necessary measure to protect their

gateways into your systems or software.

 My rationale is that I would not know if this was covered in the MSwA curriculum but I

would hope that it would be.

 I think it‘s an unrealistic requirement for a development organization. Cloud computing has

SECURITY implications that are not merely assurance implications. And I doubt you‘d ever

hire one security person who would have all the above areas of responsibility. Information

assurance, maybe, but software assurance – this capability is not relevant.

 This may be one of the more difficult concepts to grasp (i.e., the effect on security – and

functionality – of the inter-operability of component systems), but is critical to understanding

the assurance question.

 Unclear how this is different (if that is the intent) than the item above.

 Expectation that this is learned via on the job experiences, but having academic back ground

is useful.

94 | CMU/SEI-2010-TR-005

Capability:

Communicate compelling business and technical arguments on the value of software assurance to

executives, project managers, and peers, sufficient to catalyze adoption of assurance practices.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

Comments:

 Communication skills, marketing skills, budget case development skills – being able to

wedge your request into a regularly funded and regularly monitored, successful activity –

nice to have -- but the Master Degree grad surely should be technically gifted first and

foremost – and have the marketable skills to apply to the IT infrastructure and IT solution set

before this.

 This ability would apply to both concentrations, assurance and security. However, this ability

is something that will usually be developed when working on the management elements of

projects involving security. This would be a good candidate for a course that was geared to

the MBA groups specializing in information systems and infrastructure.

 This is a highly desirable skill but not necessarily a requirement.

 Many of our security program managers are required to ―sell‖ software security assurance to

development groups and their management. I‘d worry that someone with a new MSwA

degree might try to make the case for assurance in a way that would be too theoretical and

disconnected from real-world business value.

 Very important as security is again not a reflex. More often than not, you will need to fight

for a limited amount of resources.

 In order for software assurance to be taken seriously within an organization, it is necessary

for senior management to be supportive of the role prior to establishing the position of

software assurance manager. It is much more important that the candidate can fulfill the

other position requirements.

95 | CMU/SEI-2010-TR-005

 And, someone needs to be able to do ECONOMIC analysis, not just theory of good

development. Showing which assurance measures have the highest payoff the fastest is

critical. An assurance expert without business (and economic) analysis skills is worthless.

 I would hope by now all developers would understand the arguments, but sadly know this is

likely not true. While I would expect someone with a MSwA to be able to express these

arguments, I would think in most cases it would be to project managers, peers, and one

category that I think you left out but is highly important, the client executives requesting the

software. I think it would be important for a MSwA holder to be able to articulate the

arguments to company or IT executives, but I think generally that responsibility would fall to

more senior IT management.

 In theory this should be Required but the audiences listed here – execs, PMs, etc. – each

need a very specific presentation.

 Building business cases are the key to making a SA program effective. The key inside the

business case is articulating the technical implications of the threat into the business impacts

potentially avoided by the SA controls.

96 | CMU/SEI-2010-TR-005

Capability:

Apply software assurance practices in the elicitation, analysis, and specification of software

requirements.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-
 X

-
 X

-

Comments:

 Once again, this would be beneficial for an MSwA that had a concentration in assurance.

 I don‘t understand what this means.

 The ability to identify security needs early on in projects can save money. This trend will

lead to security becoming a reflex.

 Don‘t understand this. Software assurance is a process. Unless the people building features

understand assurance, an ―expert‖ will not help them and will not make a positive difference.

If you have 1000 developers per software assurance expert, the assurance expert will not

succeed unless he/she gets the 1000 developers to do the right thing, and that requires

process and education, not hands on ―specification of software requirements.‖

 This would seem fundamental to the education of an MSwA.

 See item #2 above. The sooner good design is documented, vetted, and assessed against a set

of assurance practices, the easier it is to implement them.

97 | CMU/SEI-2010-TR-005

Capability:

Apply software assurance practices in the development of a software architecture and the design

of software components and modules.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

Comments:

 For the assurance specialist, this would be mandatory as requirements, design and code

reviews could help remove these as issues before they get into the design thereby saving a lot

of effort later.

 This is a crucial skill. I would not hire a security professional who doesn‘t have experience

building systems the correct way.

 We certainly require the design of secure software components and modules, but a newly

graduated MSwA is going to start out under the supervision of experienced project leaders,

not be sent off to design new architectures on his or her own.

 What does assurance have to do with an architecture? Design of components I get, but again,

ANY developer should be able to do this.

 Same as previous comment (i.e., fundamental to the curriculum).

 This sounds like the implementation phase of the requirements phase above. Security a z-

dimensional design aspect like performance or dynamic binding behavior – you want to

incorporate it into components so that the profile in terms of interaction with other modules

is deterministic and (in this case) the strength of security commensurate with risk and need.

98 | CMU/SEI-2010-TR-005

Capability:

Apply software assurance practices in the implementation and testing of software modules.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

Comments:

 Test engineering is a very specialized capability and usually takes training and a lot of

experience.

 Regardless of whether the individual is a tester or a developer this is a vital skill.

 Familiarity with effective tools and practices that support the implementation and testing of

secure software is a definite plus.

 This would be desirable for a QA person, very desirable. Not relevant for a ―security person‖

who is a product manager and not necessarily relevant for a developer. Would never use a

MSWA as a tester. Would use ethical hackers for that but MSWA would not have hacking

skills.

 Same as previous comment (i.e., fundamental to the curriculum).

 Consistent with my assertions above.

 Expectation that day to day execution is done by development groups in the SLDC which

was implemented as part of the SA program.

99 | CMU/SEI-2010-TR-005

Capability:

Apply software assurance practices in the verification and validation of software artifacts, both

developed and acquired.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

Comments:

 This too is test oriented and would be difficult to teach without the additional ability to try it

out in real life. If this were to be included, this would be an area that could be used to solicit

grant money from corporations where the students were given money to develop procedures,

tools and practices to assist the corporation on specific projects.

 This description is not sufficiently specific for me to evaluate. Our processes focus on

software and its design and on artifacts that directly reflect the design and implementation of

the software. If verification and validation are oriented toward documents that are not an

integral part of a security-oriented commercial development process, they are ineffective and

thus of no value to us.

 You must be kidding. ―Validation of software artifacts?‖ What does that mean? Making sure

design documentation is complete? That‘s a release management function. You could never

possibly hire enough assurance people at a large development organization to do that work

and the effort would be doomed to fail. If assurance is not part of your development process,

it will absolutely FAIL as an overlay function.

 Same as previous comment (i.e., fundamental to the curriculum).

 Unclear how this differs from the above especially the ―testing.‖

100 | CMU/SEI-2010-TR-005

Capability:

Apply software assurance practices in assembly, evolution, and operations of software.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

X
-

Comments:

 I don‘t understand this capability description. If it refers to operational security expertise,

that‘s nice to have, but we hire primarily for people who can contribute to secure design,

development, and testing.

 I would expect the MSwA to be able to both design and compare secure installation and

configuration alternatives.

 Not relevant at all. ―Evolution?‖ What is that? Bug fixing? Creation of patch sets? Not sure.

 Same as previous comment (i.e., fundamental to the curriculum).

 Assembly? That‘s the 2 items above. Evolution? That‘s back to requirements, only it‘s

―new‖ requirements and that‘s OK. Operations? OK, that‘s different --- and it deserves its

own line. Super important! There should be operational detective controls built into

solutions.

101 | CMU/SEI-2010-TR-005

Capability:

Understand software assurance activities associated with the procurement and acquisition of

software and software-intensive systems.

 Required Desired Nice To Have Not Important No Opinion

Current X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

 X
-

MSwA X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-

X
-
 X

-

Comments:

 Procurement, acquisition, legacy systems, GOTS, COTS, integration, and glue are key to

current systems development. These activities are a likely vector for unintended

consequences as well as exploits. An appreciation of this domain is necessary.

 When we acquire software for integration into our products, we apply the same security

requirements as we do for software that we develop.

 The MSwA should understand what questions to ask of vendors for software assurance.

 I think people are actually inherently better at analyzing what could go wrong at a vendor

than they are at what might happen in their own software shops.

 Not relevant to us at all.

 Same as previous comment (i.e., fundamental to the curriculum).

 Procured or home-built, the process should be the same.

 This is an emerging area of requirements for the commercial sector and will likely become

more important over time, but is not essential right now.

102 | CMU/SEI-2010-TR-005

15. Are there other capabilities or issues that are important to your organization when hiring a

software assurance or software security professional?

 Ability to apply software assurance in spiral, agile and incremental development models

 Ability to contribute software assurance in preparation of proposals in response to RFPs

 Awareness and understanding of various standards.

 You would want the Master‘s grad to have an understanding of the legal framework of the

clients/customers – like HIPAA, FISMA, NISPOM, NIST, et al. This governs privacy

concerns, security concerns, etc and governs, ultimately – customer requirements for

Certification and Accreditation, etc.

 You would obviously want to see *nix OS/Windows* OS experience, Cisco/Juniper/et al

switch/router experience; Oracle/Sybase/*base/SQL experience; web app/client app

experience; web server/mail server experience, et al.

 You have stressed – via the structure of your questions – the importance of life-cycle

experience across a large-scale project – I would think that the successful Masters Student

would either come with that experience or be exposed to the equivalent. Individuals new to

the workforce may need additional years of experience to achieve mid- to advanced-level

positions.

 It would be interesting to develop real-world attack scenarios as well as real-world defense

scenarios where a student would be able to live through a cyber attack/challenge with the

current type of attack/defense experiences of the last 2-3 years. Place at their disposal kiddie

scripts, malware, virus types, DOS tools, etc. Make them think like an attacker and give

them the tools to bring down a system – if that is possible. You are training them in the

world of the potential adversary.

 It would be nice to have a curriculum for non-specialists as well – Everyone who works with

software needs to know everyday good practices to avoid common security pitfalls and test

for vulnerabilities.

 Soft skills

 Ethics and social responsibility

 Technical and business writing

 Leadership – to champion security and mentor others

 Technology infrastructure (computing, telecommunications, networks)

 Awareness in related IT operations services such as configuration management, change

management, incident management, business continuity

 For an assurance student, it should be mandatory that they come from a background with

extensive programming capability in at least one high order language (preferably C because

that is still the main language of the telephone management infrastructure) and on multiple

platforms (UNIX, Linux, etc.).

 We always look for individuals who strive to keep abreast of the current developments in the

industry including new tools, libraries and attacks.

103 | CMU/SEI-2010-TR-005

 The entire concept of the MSwA seems somewhat strange, and out of kilter with the way that

real software development organizations operate. Software design, development and testing

are done by development organizations, and we seek to have those organizations integrate

security (―software assurance‖) into their work. We do this by providing program managers,

developers, and testers, with training, tools, and guidance that are applicable to their work –

to the way that software is actually built.

 We also have an organization that focuses on the development of training materials, tools,

guidance, and processes that will help the development organizations do the security part of

their job more effectively. This organization is almost exclusively staffed with security

experts who have real-world development experience. So when they introduce a new process

or requirement such as threat modeling, they either have a high degree of confidence that it

will be implementable by development groups or they are able to design low-cost valid

experiments to help them gain that confidence. The reference to assurance case in the

―capability‖ table above suggests a program that will produce MSwA degree holders who

know how secure development and security assurance ―should‖ work based on textbook

knowledge, but have not experienced for themselves real-world development or the ways

that software can suffer from security failures.

 Our experience is that the best source of software security people is expert developers,

testers, and program managers who have developed an interest in security and then

supplemented their software expertise with real-world and theoretical understanding of

security and assurance.

 Knowledge in the following disciplines:

 Access Control

 Application Development Security

 Business Continuity and Disaster Recovery Planning

 Cryptography

 Information Security Governance and Risk Management

 Legal, Regulations, Investigations and Compliance

 Operations Security

 Physical (Environmental) Security

 Security Architecture and Design

 Telecommunications and Network Security

 Since many of the security best practices are applied to a software development lifecycle, I

would expect that the MSwA would have a good understanding of software quality

engineering principles as well has familiarity with software quality frameworks (e.g.,

CMMI).

 Some background in project management should be required for a current employee and

MSwA. You have to think about cost, schedule, and performance. Security, like quality, cost

money. Risk analysis is also a factor since you don‘t want to spend $1000 protecting a $10

asset.

 All of the identified capability areas are important to software assurance. Even with software

quality professionals, they all have some baselines training but then they end up specializing

104 | CMU/SEI-2010-TR-005

in one area – e.g. requirements, risk analysis, configuration management. Being able to apply

what is taught at a master‘s degree program is difficult to measure. I would hope the program

would integrate many real examples of compromised systems to train the master‘s degree

student in applying what they‘ve learned. The more they are exposed to real examples, the

better they will be able to apply what they‘ve learned.

 A master‘s degree program should teach all of the capabilities identified in the survey. The

real expertise, however, comes from experience.

 The ratings, which I provided above, are the same for Current and MSwA based upon the

assumption that the position requires the set of capabilities, except for one capability that I

note as desirable but not required for the reason stated. My point is that the position

requirements are independent of the candidate. I would expect that the MSwA would meet

all the requirements, whereas other candidates, without the MSwA degree, would be

expected to fail many of the requirements. The list of capabilities should include familiarity

with computer programming languages in general as well as specific working knowledge of

one or more programming languages, preferably including those that are commonly

deployed by the hiring organization. Another requirement should be knowledge of

application monitoring, failure or error detection, response, recovery and reconstitution.

 Experience with computer operations and/or technical support is highly desirable. All too

often, developers and testers have inadequate experience with production environments. It is

crucial to understand how systems are deployed, operated and supported. The curriculum

should include these areas.

 Your first question did not address secure coding practices explicitly. I would expect an

MSwA to be completely conversant in the OWASP top 25 coding mistakes and be able to

avoid them, correct them, and teach others to as well.

 You did not mention the ability to adopt standards. For example, it is well understood by

security professionals that software developers should never write their own cryptography

libraries, but most of them do not have a clue how to go about choosing one to incorporate

into their systems. I would expect an MSwA to be good at this.

 Again, these positions are 100% different. Nobody would hire an assurance expert to run the

identity management development group and I would likely not hire a cryptographer for a

program manager role in assurance.

 This entire questionnaire assumes the presence of a ―assurance expert‖ group that waves the

magic wand over development – but not everybody has the Microsoft assurance model.

Some of this think the only way to be successful is to embed assurance throughout

development – [my company], for example, creates ―security points of contact‖ within each

development group that are boots on the ground. We (the assurance [people) train them but

we are not the hiring managers – development hires people to be developers and they are

then selected to be SPOCs. Ergo, assurance is a collateral duty not their main job and we

would hire first for their main skill set.

 I understand the point of this questionnaire but I couldn‘t answer ma y questions because we

are not organized like that and we embed assurance differently. A model where ―the

assurance expert‖ signs off on what developers do I believe is a fundamentally flawed model

in development groups of any size. There will never be enough security police to make an

105 | CMU/SEI-2010-TR-005

environment secure unless assurance is highly decentralized and highly embedded within

development. An assurance expert can help do that but cannot exercise the amount of direct,

feature by feature development oversight this questionnaire assumes.

 I believe you have covered the core competencies. The only other thing I could think of is

the ability to research current sources and vectors of attack so as to keep current in

understanding ―Think like an attacker in understanding and analyzing intruder motivations

and methods, threat environments, and vulnerabilities for new and existing software

systems‖.

 I believe the applicant would need to be able to understand workflow processes that are in

house, and adapt the software assurance activities to be seamless wherever possible

throughout the work flow.

 The applicant would also need the ability to understand many different systems some

airborne, some ground based and how the integration of those domains could be

compromised.

 The installation of such systems requires at times temporary installations (hot swap methods)

that must also undergo scrutiny.

 I believe some functions (or ways the functions are expressed or implemented) may make a

system vulnerable. As such the applicant should be able to understand when such conflicts

could potentially occur and how to mitigate accordingly.

 A requirement to make a system predictive or deterministic may conflict with a software

assurance requirement. (e.g. because the system is deterministic, the expected behavior is

known and may provide a system attribute that could become vulnerable to attacks.) The

applicant should be able to understand such situations.

 I believe that for development of new systems (including those that have COTS) there

should be some type of ‗Plan Against Vulnerabilities‘ for the development that should be

part of the or appended to the hazard analysis with resultant flow down of appropriate

requirements to the system. The applicant should be able to provide such a plan as part of

their responsibilities.

 The most important thing for a SA professional is to develop a plan that is

1. Implementable with precision

2. Measurable without Herculean effort but with precision

3. Clear on what aspects – breadth and/or depth – are covered and NOT covered by the

Plan.

 Too many SAs seek out the esoteric, complicated edge cases that make it seem like they are

experts in the field. The fact is security is much more about straightforward, clear, easy-to-

implement-and-measure elements. Driving to the more common use cases typically means

driving back to mainstream development – and that‘s where many development teams would

rather sidestep everything except the most bluntly obvious security designs and practices. I

could fund a nice holiday party if I had a dime for every time I heard a development team

say ―We don‘t need to have credential protection on [our] web service because only our apps

are hitting it and they are protected on the front end.‖ Security through perceived obscurity is

still alive and well – and needs to be managed down.

106 | CMU/SEI-2010-TR-005

 Has to have deep understanding of the development process (but not how to code) and the

internal and external influences that shape applications being delivered to customers. The

delivery of complex applications over long delivery cycles with multiple iterative releases

creates many complexities when implementing software assurance that are probably not

apparent on the surface.

 It would be beneficial if a Software Assurance program could provide indications early in

the development cycle of potential flaws and vulnerabilities in the system or application. The

Software Assurance expert should understand design principles and system architecture, be

able to identify potential threats to the system or application, the vectors that could be used

to exploit a vulnerability, be able to specify security functional requirements for the system

or application as a result of the analysis of threats and vectors, and have the ability to verify

the application of controls has met the security functional requirements. The Software

Assurance expert should have the ability to quantify and categorize risk in terms that

application owners will readily understand and relate to.

 Ability to develop a repeatable, measurable program. Document the evidence and tests to

ensure appropriate knowledge transfer and handle regression testing etc.

 In today‘s environment one would be expected to have a solid understanding of other

computing topics such as networks and associated vulnerabilities, mobile communications,

cloud computing, and COTS integration, not just isolated software and systems.

107 | CMU/SEI-2010-TR-005

Appendix D: Comparison to Other Programs

Authors of this report who are faculty at Embry-Riddle Aeronautical University and Monmouth

University provided the following discussion.

Comparison to Embry-Riddle Aeronautical University (ERAU)

The ERAU Master of Software Engineering (MSE) program currently requires 15 credits of the

core courses (i.e., five courses at three credits each) and three credits of a capstone experience

[ERAU 2010]. Students can select an additional 12 credits of elective courses from the software

engineering (SE) electives list. The capstone experience can be either an individual research

project or a practicum typically offered as a team project on development of a substantial software

artifact. The most current departmental discussion led to a new proposal that an existing elective

course on software quality and assurance (SE625) be moved to the core.

With permission from the MSE program coordinator, the students with strong computing

background or an appropriate SE experience may take up to six credits of graduate technical

electives outside the SE program. Such an option allows us to introduce two courses dedicated

specifically to software assurance. Additionally, by modifying the selected course content, we

could direct the program toward more assurance. Example courses that could be appropriate for

such modifications are SE505, SE545, and SE575. Certainly there is room for some minor

modification of all core courses to highlight the software assurance issues.

Required Core Courses (15 credits)

 SE 500 Software Engineering Discipline

 SE 510 Software Project Management

 SE 530 Software Requirements Engineering

 SE 555 Object-Oriented Software Construction

 SE 610 Software Systems Architecture and Design

Capstone Experience (3 credits)

 SE 697 Software Engineering Practicum OR SE690 Graduate Research Project

Elective Courses (12 credits)

 SE 505 Model Based Verification of Software

 SE 520 Formal Methods for Software Engineering

 SE 535 Graphical User Interface Design and Evaluation

 SE 545 Specification and Design of Real-Time Systems

 SE 550 Current Trends in Software Engineering

 SE 575 Software Safety

 SE 580 Software Process Definition and Modeling

 SE 585 Metrics and Statistical Methods for Software Engineering

 SE 590 Graduate Seminar

108 | CMU/SEI-2010-TR-005

 SE 625 Software Quality Engineering and Assurance

 SE 565 Concurrent and Distributed Systems

 SE 655 Performance Analysis of Real-Time Systems

 SE 660 Formal Methods for Concurrent and Distributed Systems

 SE 699 Special Topics in Software Engineering

Modifying Monmouth University’s Master of Science in Software Engineering (MSSE)

Program to Add a Software Assurance Track

If we were to modify the Monmouth University MSSE program to create a track in software

assurance, we would most likely replace our current track in telecommunications with the

software assurance track. The curriculum for the telecommunications track is made up of the

following courses, all of which are three-credit courses:

Preparatory Courses

 CS 501B Program Development

 CS 503 Data Structures and Algorithms

 SE 504 Principles of Software Engineering

 SE 510 Object Oriented Analysis and Design

 SE 515 Disciplined Software Development (PSP)

Core Courses

 SE 561 Mathematical Foundations of Software Engineering

 SE 565 Software Systems Requirements

 SE 570 Software Systems Design

 SE 575 Software Verification, Validation and Maintenance

 SE 580 The Process of Software Engineering (CMMI, TSP and agile methods)

Telecommunications Track Courses

 SE 637 Wireless Communications

 SE 620 Network Software I

 SE 621 Network Software II

Telecommunications Track Elective Courses

Two courses chosen from among

 CS 514 Networks

 CS 526 Performance Evaluation

 CS 535 Telecommunication

 SE 610 Software Systems Security

 SE 611 Secure Web Services Design

 SE 638 Communications Systems

 CS 505 Operating System Concepts

109 | CMU/SEI-2010-TR-005

Practicum or Thesis

 SE 685A and SE 685B Software Practicum

 SE 690A and SE 690 B Thesis

To create a software assurance track, we would substitute it for the telecommunications track by

simply replacing the three courses required by the telecommunications track with three to five

courses that cover material in the MSwA2010 Body of Knowledge. We would ensure these new

courses would not duplicate material in the core software engineering courses in the Monmouth

University MSSE program. The structure of the software assurance track would look like the

following. All courses would be three credits.

Potential Software Assurance Track in Monmouth University’s MSSE Program

Preparatory Courses

 CS 501B Program Development

 CS 503 Data Structures and Algorithms

 SE 504 Principles of Software Engineering

 SE 510 Object Oriented Analysis and Design

 SE 515 Disciplined Software Development (PSP)

Core Courses

 SE 561 Mathematical Foundations of Software Engineering

 SE 565 Software Systems Requirements

 SE 570 Software Systems Design

 SE 575 Software Verification, Validation and Maintenance

 SE 580 The Process of Software Engineering (CMMI, TSP and agile methods)

Software Assurance Track Courses

 SE 610 Software System Security (Note this is an existing course currently used as an

elective.)

 SwA 60X First Software Assurance Course (with content from the MSwA2010 BoK)

 SwA 60X Second Software Assurance Course (with content from the MSwA2010 BoK)

 SwA 60X Third Software Assurance Course (with content from the MSwA2010 BoK)

Software Assurance Track Elective Courses

One course chosen from among

 SE 611 Secure Web Services Design

 CS 518 Fundamentals of Computer Security and Cryptography

 CS 528 Database and Transaction Security

110 | CMU/SEI-2010-TR-005

Practicum or Thesis

 SE 685A and SE 685B Software Practicum

 SE 690A and SE 690B Thesis

111 | CMU/SEI-2010-TR-005

Appendix E: Comparison of MSwA2010 Knowledge Units to

GSwE2009 Core BoK Knowledge Units and

Maturity Levels

Table 1 depicts a comparison of the MSwA2010 knowledge units with the BoK knowledge units

in the GSwE2009 Core BoK. The purpose of the comparison is to determine where and to what

degree there are differences in the two BoKs. This comparison is meant to highlight where the

MSwA2010 project will need to develop curriculum courses and modules.

The column labeled GSwE2009 BOK Coverage uses the following notation:

 The letter notation refers to a knowledge area (KA) and a knowledge unit (KU) in the

GSwE2009 Core BoK. For example, J1 refers to the KA/KU => Software Engineering

Process/Process Implementation and Change.

 The term no coverage means there is no explicit reference to the MSwA2010 KU topic in the

GSwE2009 Core BoK.

 The term limited coverage means there is little coverage of the MSwA2010 KU topic in the

GSwE2009 Core BoK, and this topic is mostly outside the scope of the GSwE2009.

 The term supplemented means there is coverage of the MSwA2010 KU topic in the

GSwE2009 Core BoK, but this coverage must be supplemented with additional material to

reach the intent of the MSwA2010 KU.

Table 1 also compares the SwA BoK with maturity levels from Software Security Engineering: A

Guide for Project Managers [Allen 2008] using the MSwA2010 curriculum. Maturity levels vary

among knowledge units, with some knowledge units less mature than others. We feel it is

important to teach students all the relevant knowledge in the field, even though some areas may

be less mature, so that they know what is available.

The table uses the following maturity levels adapted from the Software Security Engineering: A

Guide for Project Managers book for the MSwA2010 curriculum [Allen 2008]:

 L1: The content provides guidance for how to think about a topic for which there is no

proven or widely accepted approach. The intent of the description is to raise awareness and

aid the reader in thinking about the problem and candidate solutions. The content may also

describe promising research results that may have been demonstrated in a constrained

setting.

 L2: The content describes practices that are in early pilot use and are demonstrating some

successful results.

 L3: The content describes practices that have been successfully deployed (mature) but are in

limited use in industry or government organizations. They may be more broadly deployed in

a particular market sector.

112 | CMU/SEI-2010-TR-005

 L4: The content describes practices that have been successfully deployed and are in

widespread use. Readers can start using these practices today with confidence. Experience

reports and case studies are typically available.

Table 1: Comparison of MSwA2010 BoK and GSwE2009 BoK

Breakdown of Topics

MSwA2010

Bloom

Level

GSwE BOK

Coverage

GSwE2009

Bloom

Level

Maturity

Level

1. Assurance Across Life Cycles

1.1. Software Life-Cycle Processes

New development C J1, J2 C/AP L4

Integration, assembly, and deployment C J1, J2 C/AP L4

Operation and evolution C B7, J1, J2 C/AP L4

Acquisition, supply, and service C J1, J2 C/AP L3

1.2. Software Assurance Processes and

Practices

Process and practice assessment AP J3 AP L3

Software assurance integration into SDLC

phases

AP limited

coverage

 L2/3

2. Risk Management

2.1. Risk Management Concepts

Types and classification C I2 AP L4

Probability, impact, severity C I2 AP L4

Models, processes, metrics C I2 AP L3–metrics; L4

2.2. Risk Management Process

Identification AP I2 AP L4

Analysis AP I2 AP L4

Planning AP I2 AP L4

Monitoring and management AP I2 AP L4

2.3. Software Assurance Risk Management

Vulnerability and threat identification AP no coverage L3

Analysis of software assurance risks AP no coverage L3

Software assurance risk mitigation AP no coverage L3

Assessment of software assurance

processes and practices

AP limited

coverage

 L2/3

3. Assurance Assessment

3.1. Assurance Assessment Concepts

Baseline level of assurance; allowable

tolerances, if quantitative

AP no coverage L1

Assessment methods C I4, K3 C/AP L2/3; L4–

vulnerability

assessments

/scans

3.2. Measurement for Assessing Assurance

Product and process measures by life-cycle

phase

AP J4 AP L1/2

Other performance indicators that test for

the baseline as defined in 3.1.1, by life-

cycle phase

AP limited

coverage

 L1/2

Measurement processes and frameworks C I6, J1, J4 C/AP L2/3

Business survivability and operational

continuity

AP limited

coverage

 L2

113 | CMU/SEI-2010-TR-005

Breakdown of Topics

MSwA2010

Bloom

Level

GSwE BOK

Coverage

GSwE2009

Bloom

Level

Maturity

Level

3.3. Assurance Assessment Process (collect and

report measures that demonstrate the baseline

as defined in 3.1.1)

Comparison of selected measurements to

the established baseline

AP J4 AP L3

Identification of out-of-tolerance variances AP no coverage L3

4. Assurance Management

4.1. Making the Business Case for Assurance

Valuation and cost-benefit models; cost and

loss avoidance; return on investment

AP I7 C L3

Risk analysis C limited

coverage

 L3

Compliance justification C no coverage L3

Business impact/needs analysis C B1, B3, C3 C/AP L3

4.2. Managing Assurance

Project management across the life cycle C I1, I3 AP L3

Integration of other knowledge units AN limited

coverage

 L2/3

4.3. Compliance Considerations for Assurance

Laws and regulations C limited

coverage

 L3

Standards C limited

coverage

 L3

Policies C limited

coverage

 L2/3

5. System Security Assurance

5.1. For Newly Developed and Acquired

Software for Diverse Systems

Security and safety aspect of computer-

intensive critical infrastructure systems such

as power, telecommunication, water, and air

traffic control

K no coverage L2

Potential attack methods C no coverage L3

Analysis of threats to software AP limited

coverage

 L3

Methods of defense AP limited

coverage

 L3

5.2. For Diverse Operational (Existing) Systems

Historic and potential operational attack

methods

C limited

coverage

 L4

Analysis of threats to operational

environments

AN limited

coverage

 L3

Design of and plan for access control,

privileges, and authentication

AP limited

coverage

 L3

Security methods for physical and

personnel environments

AP no coverage L4

5.3. Ethics and Integrity in Creation, Acquisition,

and Operation of Software Systems

Overview of ethics, code of ethics, and legal

constraints

C A1, A2 C/AP L4

Computer attack case studies C no coverage L3

6. System Functionality Assurance

6.1. Assurance Technology

114 | CMU/SEI-2010-TR-005

Breakdown of Topics

MSwA2010

Bloom

Level

GSwE BOK

Coverage

GSwE2009

Bloom

Level

Maturity

Level

Technology evaluation AN limited

coverage

 L3

Technology improvement AP limited

coverage

 L3

6.2. Assured Software Development

Development methods AP C-all, D-all,

E-all, F-all +

supple-

mented

C/AP/AN L2/3

Quality attributes C C-all, D-4 +

supple-

mented

C/AP/AN L3–depends

on the

property

Maintenance methods AP G-all +

supple-

mented

C/AP L3

6.3. Assured Software Analytics

Systems analysis AP limited

coverage

C/AP L2–

architectures;

L3/4–

networks,

databases

(identity

management,

access

control)

Structural analysis AP limited

coverage

C/AP/AN L3

Functional analysis AP limited

coverage

C/AP/AN L2/3

Analysis of methods and tools C limited

coverage

C/AP/AN L3

Testing for assurance AN limited

coverage

C/AP/AN L3

Assurance evidence AP limited

coverage

AP/AN L2

6.4. Assurance in Acquisition

Assurance of acquired software AP limited

coverage

 L2

Assurance of software services AP limited

coverage

 L3

7. System Operational Assurance

7.1. Operational Procedures

Business objectives C limited

coverage

 L3

Assurance procedures AP limited

coverage

 L3

Assurance training C limited

coverage

 L4

7.2. Operational Monitoring

Monitoring technology C limited

coverage

 L4

Operational evaluation AP limited

coverage

 L4

Operational maintenance AP G-all +

supple-

 L3

115 | CMU/SEI-2010-TR-005

Breakdown of Topics

MSwA2010

Bloom

Level

GSwE BOK

Coverage

GSwE2009

Bloom

Level

Maturity

Level

mented

Malware analysis AP no coverage L2/3

7.3. System Control

Responses to adverse events AN D-4, F-3 +

supple-

mented

AP L3/4

Business survivability AP no coverage L3

116 | CMU/SEI-2010-TR-005

Appendix F: Course Descriptions for the MSwA2010

Curriculum

The following are course descriptions for nine courses that could compose an MSwA stand-alone

program, as well as seven courses that could be added to an MSwE program. The knowledge units

that each course should cover appear in parentheses by the course name. (Over the next several

months we will be adding reference material for each course, including publicly available items

like Build Security In (BSI) website articles, CrossTalk articles, books, standards, and other

relevant materials such as CWE, CAPEC, and so on. These updates will be available at the web

page for the Software Assurance Curriculum project: http://www.cert.org/mswa.)

MSwA Stand-Alone Program (Nine Courses)

Assurance Management (2.1, 2.2, 2.3, 4.1, 4.2, 4.3)

Assurance Assessment (3.1, 3.2, 3.3, 6.4)
22

System Operational Assurance (7.1, 7.2, 7.3)

System Security Assurance (5.1, 5.2, 5.3)

Assured Software Analytics (6.3)

Assured Software Development 1 (1.1, 1.2, 6.1, 6.2 [requirements])
23

Assured Software Development 2 (6.1, 6.2 [specification, design])

Assured Software Development 3 (6.2 [code, test, verification, validation])

Software Assurance Capstone Experience

MSwA Courses Added to MSwE Program (Seven Courses)

Assurance Management (1.2, 2.1, 2.2, 2.3, 4.1, 4.2, 4.3)

System Operational Assurance (3.1, 3.2, 3.3, 6.4, 7.1, 7.2, 7.3)
24

System Security Assurance (5.1, 5.2, 5.3)

Assured Software Analytics (6.3)

Assured Software Development 1 (1.1, 6.1, 6.2 [requirements, specification, design])

Assured Software Development 2 (6.2 [code, test, verification, validation])
25

22

 This course is not present in the MSwA Courses Added to MSwE program.

23
 The 1.2 knowledge unit, italicized, is different in Assured Development 1 in the stand-alone program and

Assurance Management in the MSwA Courses Added to MSwE program.

24
 The bolded knowledge units are not covered at the same Bloom’s level as in the stand-alone program.

http://www.cert.org/mswa

117 | CMU/SEI-2010-TR-005

Software Assurance Capstone Experience

MSwA Stand-Alone Program (Nine Courses)

Course: Assurance Management (2.1, 2.2, 2.3, 4.1, 4.2, 4.3)

Catalog Description

This course covers the fundamentals of software and system assurance management, including

making the business case for assurance; planning and managing development projects that include

assurance practices; compliance with laws, regulations, and standards, and policies related to

assurance; and risk assessment, identification, analysis, mitigation, and monitoring for assurance.

Expected Outcomes

After completing this course, students will be able to

1. make a business case for assurance

2. understand how to add assurance considerations and practices as part of normal project

management activities

3. identify, analyze, and select assurance practices that are relevant for a specific software

development or acquisition project

4. understand laws, regulations, standards, and policies that are relevant to assurance

5. understand basic risk management concepts

6. identify, analyze, plan for, mitigate, and monitor assurance risks

7. identify risks arising from vulnerabilities and threats

8. determine assurance processes and practices that mitigate risks

25

 Condensed versions of Assured Software Development 1, 2, and 3 are in the stand-alone program.

118 | CMU/SEI-2010-TR-005

Course: Assurance Assessment (3.1, 3.2, 3.3, 6.4)

Catalog Description

This course covers the fundamentals of establishing a required level of software and system

assurance. It also covers applying methods and determining measures to assess if the required

level of assurance has been achieved. Topics include assessment methods; defining product and

process measures and other performance indicators; measurement processes and frameworks;

performance indicators for business survivability and continuity; and comparing selected

measures to determine if the software/system meets its required level of assurance. These

fundamentals are applied to newly developed software and systems, as well as to the acquisition

of software and services.

Expected Outcomes

After completing this course, students will be able to

1. specify a required level of assurance for a system

2. understand how to use a range of assessment methods, including requirements validation,

risk analysis, threat analysis, vulnerability assessment, and assurance evidence

3. define and develop key product and process measures and other performance indicators that

can be used to validate a required level of assurance

4. collect and report measures that indicate the extent to which software and systems have

achieved their required level of assurance

5. be able to perform assurance assessment for newly developed software and systems

6. be able to perform assurance assessment for acquired systems and services, including

developing service level agreements and monitoring performance against such agreements

119 | CMU/SEI-2010-TR-005

Course: System Operational Assurance (7.1, 7.2, 7.3)

Catalog Description

This course teaches students how to establish procedures to assure that systems in operation

continue to meet their security requirements and are able to respond to new threats. Topics

include assurance policies and procedures; assurance training; technologies for monitoring and

controlling systems; evaluating monitoring results; maintaining operational systems; evaluating

malicious code; responding to adverse events; and taking actions necessary to maintain business

survivability and continuity of operations.

Expected Outcomes

After completing this course, students will be able to

1. understand the role of business objectives and strategic planning in software and system

assurance

2. create appropriate security policies and procedures for system operations

3. understand the type of training needed by users and administrative personnel in secure

system operations

4. understand the capabilities and limitations of monitoring technologies for systems, services,

and personnel

5. evaluate operational monitoring results for system and service functionality and security

6. maintain and evolve operational systems while preserving assured functionality and security

7. evaluate malicious content and apply appropriate countermeasures

8. plan for and execute effective responses to operational system accidents, failures, and

intrusions

9. maintain business survivability and continuity of operations in adverse environments

120 | CMU/SEI-2010-TR-005

Course: System Security Assurance (5.1, 5.2, 5.3)

Catalog Description

This course teaches students how to incorporate effective security technologies and methods into

new and existing systems. Students will learn how to think like an attacker in planning a variety

of attacks, including password cracking, escalation of privileges, denial-of-service, and the

creation, distribution, and insertion of viruses, worms, Trojans, spyware, logic bombs, and other

malicious code. They will learn the most effective methods for preventing or defeating these

attacks and analyzing the threats that they pose. Students will understand their ethical

responsibilities and obligations when developing, acquiring, and operating software and systems.

Expected Outcomes

After completing this course, students will be able to

1. know the kinds of safety and security risks associated with critical infrastructure systems

such as power, telecommunications, water, and air traffic control systems

2. understand the variety of methods by which attackers can damage software or data

associated with software via weaknesses in the design or coding of the system

3. analyze threats to software

4. deploy appropriate countermeasures, such as layers, access controls, privileges, intrusion

detection, encryption, and coding checklists

5. analyze threats to operational environments

6. design and plan for effective countermeasures such as access control, authentication,

intrusion detection, encryption, and coding checklists

7. understand how physical security countermeasures such as gates, locks, guards, and

background checks can address risks

8. understand how people who are knowledgeable about attack and prevention methods are

obligated to use their abilities, both legally and ethically

9. understand the legal and ethical considerations involved in analyzing a variety of historical

events and investigations

121 | CMU/SEI-2010-TR-005

Course: Assured Software Analytics (6.3)

Catalog Description

This course covers analysis methods, techniques, and tools to assure that newly developed and

acquired software, systems, and services meet their functional and security requirements. Students

will learn how to perform systems analysis, structural analysis, and functional analysis of software

systems. They will also learn how to test for assurance and develop auditable assurance evidence.

Expected Outcomes

After completing this course, students will be able to

1. analyze system architectures, networks, and databases for assurance properties

2. restructure the logic of existing software to improve understandability and modifiability

3. reverse engineer existing software to determine functionality and security properties

4. understand the capabilities and limitations of methods, techniques, and tools for software

analysis

5. evaluate testing methods, plans, and results for assuring software

6. develop auditable assurance evidence

122 | CMU/SEI-2010-TR-005

Course: Assured Software Development 1 (1.1, 1.2, 6.1, 6.2 [requirements])

Catalog Description

This course covers the fundamentals of incorporating assurance practices, methods, and

technologies into software development and acquisition life-cycle processes and models. With

this foundation, the course provides students with rigorous methods for eliciting software and

system assurance requirements based on threat identification, characterization, and modeling;

assurance risk management; and misuse/abuse cases. Students will also learn how to evaluate

methods and environments for creating software and systems that meet their functionality and

security requirements.

Expected Outcomes

After completing this course, students will be able to

1. understand life-cycle models and processes for newly developed software systems

2. understand life-cycle models and processes for the acquisition, supply, and service of a

software system

3. use methods, techniques, and tools to assess the applicability of assurance processes and

practices for typical life-cycle phases, such as requirements engineering, architecture and

design, coding, testing, evolution, acquisition, and retirement

4. elicit and analyze requirements for assured software based on prior threat modeling,

identification of attack patterns, and misuse/abuse cases

5. apply security requirements engineering methods in developing assurance requirements

123 | CMU/SEI-2010-TR-005

Course: Assured Software Development 2 (6.1, 6.2 [specification, design])

Catalog Description

This course covers rigorous methods for formal assurance specification and for architecting and

designing software and systems to meet those specifications. Such methods include use of formal

specification languages, applying security principles, architectural risk analysis, architectural

vulnerability assessment, and technology-specific security guidelines.

Expected Outcomes

After completing this course students will be able to

1. use formal methods to specify and validate requirements for assured software

2. develop architectures that demonstrate that software and systems will satisfy their assurance

requirements

3. design software and systems that fulfill architectural specifications for assurance

4. evaluate the capabilities and limitations of technical environments, languages, and tools

when developing assured software

5. use assurance architecture and design methods, such as architectural risk analysis (including

attack resistance, attack tolerance, and attack resilience), threat modeling, attack patterns,

attack surface, design principles (such as least privilege and failing securely), and

technology-specific guidelines

6. apply security technologies in developing architectures and designs, such as encryption, fault

tolerance, intrusion detection, access controls, and authentication

7. understand quality attributes for software (including security) and how to specify them

8. understand design approaches for achieving quality attributes, including security, and tactics

for achieving them

124 | CMU/SEI-2010-TR-005

Course: Assured Software Development 3 (6.2 [code, test, verification, validation])
26

Catalog Description

This course covers rigorous methods, techniques, and tools for developing secure code. Such

methods include code analysis for commonly known vulnerabilities, source code review using

static analysis tools, and known language-specific practices for producing secure code.

This course also covers rigorous methods and tools for inspecting, testing, verifying, and

validating software and systems to demonstrate that they meet functional and security

requirements. Students will learn methods for verification and validation for security assurance

and how security vulnerabilities can differ from programming errors. Team inspections and

correctness verification methods will be covered. Testing techniques will include threat- and

attack-based testing, functional testing, risk- and usage-based testing, stress testing, black- and

white-box testing, and penetration testing.

Expected Outcomes

After completing this course, students will be able to

1. develop software that does not contain known vulnerabilities such as incorrect or incomplete

input validation, poor or missing exception handling, buffer overflows, SQL injection, and

race conditions

2. use methods, techniques, and tools that demonstrate that developed software meets its

functionality and security requirements and implements its security architecture and design

specifications

3. understand how to apply team inspections to validate functionality and security properties of

software

4. understand methods for correctness verification of critical software components

5. understand how testing for security differs from traditional testing

6. test software to ensure that assurance requirements are met using a variety of methods,

techniques, and tools

7. use threat models, attack patterns, and misuse/abuse cases during software and system

testing

8. maintain software to continue to meet its functionality and security requirements

26

 This course may be taught as two separate courses depending on the level of content for secure coding and the
extent to which students are expected to develop secure code.

125 | CMU/SEI-2010-TR-005

Course: Software Assurance Capstone Experience
27

Catalog Description

Students will work as part of a team to develop a secure software system for a customer.

Deliverables include requirements specifications, preliminary and detailed designs, code and test

verification, and validation results. The course culminates with a presentation of the software

system to the customer, including a demonstration of its functional and security features.

Expected Outcomes

After completing this course, students will be able to

1. establish and specify the required or desired level of assurance for a specific software system

2. evaluate the capabilities and limitations of technical environments, languages, and tools for

assured software

3. identify, analyze, and perform software assurance practices that are relevant for the software

to be developed

4. demonstrate compliance with laws, regulations, standards, and policies that apply to the

software system

5. analyze the threats to which the software is most likely to be vulnerable in a specific

operating environment and domain

6. develop requirements specification, and architecture and design specifications, that satisfy

the required/desired level of assurance for a specific software system

7. apply methods, techniques, and tools to construct software modules that meet the

functionality and security requirements and implement their security architecture and design

specifications

8. apply testing and review methods, develop plans, and analyze results that demonstrate that a

software system satisfies its functionality and security requirements

9. plan for and ensure that the software responds effectively to operational software accidents,

failures, and intrusions

Special Topics in the Capstone Experience

Network-Based Assurance

Students will focus on issues that occur in web applications, mobile computing, cloud computing,

and systems of systems.

Software Safety and Reliability

Students will focus on assuring safety and reliability of software systems; hazard/risk analyses;

Fault Tree Analysis (FTA), Failure Mode and Effect Analysis (FMEA), and Event Tree Analysis

(ETA); design and implementation diversity; fault tolerance; and so on.

27

 This course may be offered over two terms.

126 | CMU/SEI-2010-TR-005

Performance Analysis of Computer Systems

Students will focus on using quantitative methods to assess the system, statistical analysis,

analysis of variance (ANOVA), experiment design, measurements, simulation, and analytical

models.

Fault Tolerant Systems

Students will focus on sources of faults and failures, redundant designs, and multi-version

programming.

Model-Based Verification

Students will focus on formal and semi-formal representation of systems and their verification.

127 | CMU/SEI-2010-TR-005

MSwA Courses Added to MSwE Program (Seven Courses)

Course: Assurance Management (1.2, 2.1, 2.2, 2.3, 4.1, 4.2, 4.3)

Catalog Description

This course covers the fundamentals of assurance management, including risk analysis and

tradeoff assessment of security measures, business cases for software assurance, standards and

regulations related to software assurance, and the planning and control of projects involving

software assurance.

Expected Outcomes

After completing this course, students will be able to

1. make a business case for assurance

2. assess the use of software assurance processes and practices

3. understand how to add assurance considerations and practices as part of normal project

management activities

4. identify, analyze, and select assurance practices that are relevant for a specific software

development project

5. understand laws, regulations, standards, and policies that are relevant to assurance

6. understand basic risk management concepts

7. identify, analyze, plan for, mitigate, and monitor assurance risks

8. identify risks arising from vulnerabilities and threats

9. determine assurance processes and practices that mitigate risks

128 | CMU/SEI-2010-TR-005

Course: System Operational Assurance (3.1, 3.2, 3.3, 6.4, 7.1, 7.2, 7.3)

Catalog Description

This course teaches students how to analyze and validate the effectiveness of assurance

operations, create auditable evidence of security measures, monitor and assess system operational

security, and respond to new threats.

Expected Outcomes

After completing this course, students will be able to

1. establish and specify the required or desired level of assurance for a specific software system

2. understand appropriate methods for assessment of software assurance

3. use appropriate product and process measures by software development life-cycle phase

4. define additional performance indicators for software systems and processes

5. collect and report measures that demonstrate effective software assurance

6. understand the role of business objectives and strategic planning in system assurance

7. create appropriate security policies and procedures for system operations

8. understand the type of training needed by users and administrative personnel in secure

system operations

9. understand the capabilities and limitations of monitoring technologies for systems, services,

and personnel

10. evaluate operational monitoring results for system and service functionality and security

11. maintain and evolve operational systems while preserving assured functionality and security

12. evaluate malicious content and apply appropriate countermeasures

13. plan for and execute effective responses to operational system accidents, failures, and

intrusions

14. maintain business survivability and continuity of operations in adverse environments

129 | CMU/SEI-2010-TR-005

Course: System Security Assurance (5.1, 5.2, 5.3) [This course description is the same

as the MSwA Stand-Alone Program.]

Course: Assured Software Analytics (6.3) [This course description is the same as the

MSwA Stand-Alone Program.]

Course: Assured Software Development 1 (1.1, 6.1, 6.2 [requirements, specification,

design])

Catalog Description

This course covers the fundamentals of incorporating assurance practices, methods, and

technologies into software development life-cycle processes and models. With this foundation, the

course provides students with rigorous methods for eliciting and specifying software and system

assurance requirements and for developing architectures and designs that meet assurance

requirements. Students will also learn how to evaluate technologies for creating software and

systems that meet their functionality and security requirements.

Expected Outcomes

After completing this course, students will be able to

1. understand life-cycle models and processes for newly developed software and systems

2. use methods, techniques, and tools to assess the applicability of assurance processes and

practices for typical life-cycle phases, such as requirements engineering, architecture and

design, coding, testing, evolution, acquisition, and retirement

3. elicit, analyze, specify, and validate requirements for assured software

4. architect and design assured software

5. evaluate the capabilities and limitations of technical environments, languages, and tools

when developing assurance requirements, architectures, and designs

6. understand requirements and design approaches for achieving quality attributes, including

security and tactics for achieving them

130 | CMU/SEI-2010-TR-005

Course: Assured Software Development 2 (6.2 [code, test, verification, validation])

Catalog Description

This course covers rigorous methods for implementing (coding), testing, verifying, and validating

software and systems to demonstrate that they meet functional and security requirements.

Expected Outcomes

After completing this course, students will be able to

1. develop software that does not contain known vulnerabilities

2. use methods, techniques, and tools that demonstrate that developed software meets its

functional and security requirements and implements its security architecture and design

specifications

3. test, verify, and validate software to ensure that assurance requirements are met using a

variety of methods, techniques, and tools

4. maintain software to continue to meet its functionality and security requirements

Course: Software Assurance Capstone Experience [This course description is the

same as the MSwA Stand-Alone Program.]

Special Topics in the Capstone Experience [Same as MSwA Stand-Alone]

The special topics are the same as the MSwA Stand-Alone Program plus acquisition. Acquisition

is added as a special topic here because it does not receive the same level of attention in the

MSwE program as in the MSwA Stand-Alone Program.

131 | CMU/SEI-2010-TR-005

Glossary

acquisition

Process of obtaining a system, software product, or software service. Software products may

include commercial, off-the-shelf (COTS) products; modified, off-the-shelf (MOTS) products;

open source products; or fully developed products.

The above definition was derived from these references:

[IEEE-CS 2008]

ISO/IEC 12207, IEEE Std 12207-2008, Systems and Software Engineering - Software Life Cycle

Processes

[IEEE-CS 1998]

IEEE Std 1062, IEEE Recommended Practice for Software Acquisition

correct functionality

Software assurance seeks to provide a level of confidence that software functions in the intended

manner as defined by requirements and specifications. Software should establish a secure

computing environment and provide required functionality that is free from errors and known

vulnerabilities. Software evolution should maintain these properties.

development models

Include incremental, spiral, evolutionary, and agile methods.

diverse systems

Include systems-of-systems, network systems, embedded systems, critical infrastructure systems,

service-oriented systems, industrial networks, supervisory control and data acquisition systems

(SCADA), distributed control systems (DCS), COTS, legacy systems, and open source software.

Awareness and understanding as applied to diverse systems may include

 analysis of system boundaries, interfaces with service providers, and service level agreement

to assure required performance

 evaluation of network system design—throughput, load balancing, backup and recovery, and

operational monitoring to assure required availability

 analysis of system-of-systems integration and interoperability to assure preservation of

security properties and required functional behavior

 assurance of computational and information asset preservation and continuity of operations

through backup and switchover methods

 assurance of security properties—including authentication, authorization, integrity,

confidentiality, non-repudiation, and privacy across a variety of system architectures,

configurations, and providers

132 | CMU/SEI-2010-TR-005

life-cycle processes

Include new system development, legacy system evolution, and acquisition, both for systems

through supply chains, open source, and COTS, and for services through external providers. Also

includes process models such as CMMI.

security controls

The management, operational, and technical controls (that is, safeguards or countermeasures)

prescribed for an information system to protect the confidentiality, integrity, and availability of

the system and its information.

security objective

Confidentiality, integrity, or availability.

security properties

Include authentication, authorization, confidentiality, integrity, non-repudiation, and privacy.

software analytics

Include reverse-engineering technologies that transform arbitrary control logic into structured

form and function abstraction to recover designs and specifications from implementations.

software analytics

Specialized technologies and processes are necessary to analyze and assure functional and

security properties of software. Analysis subject matter extends across the life cycle and includes

specification, design, code, inspection, and test artifacts. Analytic methods include reverse

engineering to transform arbitrary control logic into structured form for improved understanding

and function abstraction to recover designs and specifications from implementations.

software assurance

Application of technologies and processes to achieve a required level of confidence
28

 that

software systems and services function in the intended manner, are free from accidental or

intentional vulnerabilities, provide security capabilities appropriate to the threat environment, and

recover from intrusions and failures.

This definition has been expanded from the original definition offered by The Committee on

National Security Systems [CNSS 2009].

Software quality

Capability of a software product to satisfy stated and implied needs when used under specified

conditions [ISO 2009].

software security

Engineering software so that it is as vulnerability- and defect-free as possible and continues to

function correctly in spite of attack or misuse.

28

 In the CNSS definition, the use of the word ―confidence‖ implies that there is a basis for the belief that software
systems and services function in the intended manner.

133 | CMU/SEI-2010-TR-005

system defenses

Include filtering, monitoring, and control at network, system, and application levels and specific

technologies including encryption and multi-layering.

system vulnerabilities

Include system architecture, design, implementation, operational, and user characteristics that

enable attack strategies.

threat environments

Include attack sources, motivations, technologies, methods, targets, and consequences.

134 | CMU/SEI-2010-TR-005

Acronyms

ACM

Association for Computing Machinery

ANOVA

analysis of variance

ASEE

American Society for Engineering

Education

Bloom Cognitive Levels

K—knowledge

C—comprehension

AP—application

AN—analysis

BoK

body of knowledge

BSI

Build Security In

CAPEC

Common Attack Pattern Enumeration and

Classification

CIO

chief information officer

CISO

chief information security officer

CMMI

Capability Maturity Model Integration

CMU

Carnegie Mellon University

CNSS

Committee of National Security Systems

COTS

commercial, off-the-shelf

CWE

common weakness enumeration

DCS

distributed control systems

DHS

Department of Homeland Security

DoD

Department of Defense

DOS

disk operating system

ECTS

European Credit Transfer and Accumulation

System

ERAU

Embry-Riddle Aeronautical University

ETA

event tree analysis

FISMA

Federal Information Security Management

Act

FMEA

Failure Mode and Effect Analysis

FTA

fault tree analysis

GOTS

government, off-the-shelf

GSwE2009

Graduate Software Engineering Curriculum

135 | CMU/SEI-2010-TR-005

HIPAA

Health Insurance Portability and

Accountability Act

HR

human resources

IA

information assurance

IAB

industry advisory board

IEEE

Institute of Electrical and Electronics

Engineers

IEEE-CS

Institute of Electrical and Electronics

Engineers Computer Society

iSSEc

Integrated Software & Systems Engineering

Curriculum

ISO

International Organization for

Standardization

IT

information technology

KA

knowledge area

KU

knowledge unit

MBA

Master of Business Administration

MOTS

modified-off-the-shelf

MSE

Master of Software Engineering

MSSE

Master of Science in Software Engineering

MSwA

Master of Software Assurance

MSwA Core BoK

Master of Software Assurance Core Body of

Knowledge

MSwA2010

Master of Software Assurance Curriculum

MSwA2010 BoK

Master of Software Assurance Curriculum

Body of Knowledge

MSwE

Master of Software Engineering

NISPOM

National Industrial Security Program

Operating Manual

NIST

National Institute of Standards and

Technology

NCSD

National Cyber Security Division

OPM

U.S. Office of Personnel Management

OS

operating system

OWASP

Open Web Application Security Project

PM

project manager

PPS

Partnership for Public Service

RFP

request for proposal

136 | CMU/SEI-2010-TR-005

QA

quality assurance

SA

software assurance

SCADA

Supervisory Control and Data Acquisition

Systems

SDLC

software development life cycle

SE

software engineering

SEEPP

Software Engineering Ethics and

Professional Practices

SEI

Software Engineering Institute

SIA

survivability and information assurance

SOA

service-oriented architecture

SPOC

single point of contact

SQL

Structured Query Language

SwA

software assurance

SwA BoK

Software Assurance Body of Knowledge

SwACBK

Software Assurance Curriculum Body of

Knowledge

SWEBOK

Software Engineering Curriculum Body of

Knowledge

137 | CMU/SEI-2010-TR-005

References

URLs are valid as of the publication date of this report.

[ACM 2008]

The Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS).

―Computer Science Curriculum 2008: An Interim Revision of CS 2001.‖ Computing Curriculum

Series. http://www.acm.org//education/curricula/ComputerScience2008.pdf (2008).

[ACM 2009]

The Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS).

Software Engineering Code of Ethics and Professional Practice (Version 5.2). ACM/IEEE-CS

Joint Task Force on Software Engineering Ethics and Professional Practices (SEEPP).

http://www.acm.org/about/se-code (2009).

[Allen 2008]

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software

Security Engineering: A Guide for Project Managers. Addison-Wesley Professional, 2008.

[Ardis 1989]

Ardis, Mark A. & Ford, Gary. SEI Report on Graduate Software Engineering Education (1989)

(CMU/SEI-89-TR-021). Software Engineering Institute, Carnegie Mellon University, 1989.

http://www.sei.cmu.edu/library/abstracts/reports/89tr021.cfm

[Bloom 1956]

Bloom, B. S., ed. Taxonomy of Educational Objectives: The Classification of Educational Goals:

Handbook I, Cognitive Domain. Longmans, 1956.

[CERT 2007]

CERT. Survivability and Information Assurance Curriculum. Software Engineering Institute,

Carnegie Mellon University. http://www.cert.org/sia/ (2007).

[CNSS 2009]

Committee on National Security Systems (CNSS). Instruction No. 4009, National Information

Assurance Glossary. Revised June 2009.

[DHS 2010a]

Department of Homeland Security (DHS) Software Assurance (SwA). Build Security In.

https://buildsecurityin.us-cert.gov/daisy/adm-bsi/home.html (2010).

[DHS 2010b]

Department of Homeland Security (DHS) Software Assurance (SwA) Workforce Education and

Training Working Group. Software Assurance CBK/Principles Organization.

https://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html (2010).

http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/about/se-code
http://www.cert.org/sia/
https://buildsecurityin.us-cert.gov/daisy/adm-bsi/home.html
https://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html
http://www.sei.cmu.edu/library/abstracts/reports/89tr021.cfm

138 | CMU/SEI-2010-TR-005

[Drew 2009]

Drew, Christopher. ―Wanted: ‗Cyber Ninjas.‘‖ New York Times, December 29, 2009.

http://www.nytimes.com/2010/01/03/education/edlife/03cybersecurity.html?emc=eta1(Accessed

January 2010).

[Ellison 2010]

Ellison, Robert J.; Goodenough, John B.; Weinstock, Charles B.; & Woody, Carol. Evaluating

and Mitigating Software Supply Chain Security Risks (CMU/SEI-2010-TN-016). Software

Engineering Institute, Carnegie Mellon University, 2010.

http://www.sei.cmu.edu/library/abstracts/reports/10tn016.cfm

[ERAU 2010]

Embry-Riddle Aeronautical University. Master of Software Engineering Program.

http://www.erau.edu/db/degrees/ma-softwareeng.html (2010).

[Ford 1991]

Ford, Gary. 1991 SEI Report on Graduate Software Engineering Education (CMU/SEI-91-TR-

002). Software Engineering Institute, Carnegie Mellon University, 1991.

http://www.sei.cmu.edu/library/abstracts/reports/91tr002.cfm

[Huitt 2006]

Huitt, W. ―The Cognitive System.‖ Educational Psychology Interactive. Valdosta State

University, 2006. http://chiron.valdosta.edu/whuitt/col/cogsys/cogsys.html (Accessed May 22,

2008).

[IEEE-CS 2004a]

IEEE Computer Society (IEEE-CS) & the Association for Computing Machinery (ACM).

―Computer Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in

Computer Engineering.‖ Computing Curriculum Series.

http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf (2004).

[IEEE-CS 2004b]

IEEE Computer Society (IEEE-CS) & the Association for Computing Machinery (ACM).

―Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering.‖ Computing Curriculum Series.

http://sites.computer.org/ccse/SE2004Volume.pdf (2004).

[IEEE-CS 2004c]

IEEE Computer Society (IEEE-CS). Software Engineering Body of Knowledge (SWEBOK).

http://www.computer.org/portal/web/swebok (2004).

[iSSEc 2009]

Integrated Software & Systems Engineering Curriculum (iSSEc) Project. Graduate Software

Engineering 2009 (GSwE2009) Curriculum Guidelines for Graduate Degree Programs in

Software Engineering, Version 1.0. Stevens Institute of Technology, 2009.

http://www.nytimes.com/2010/01/03/education/edlife/03cybersecurity.html?emc=eta1(Accessed
http://www.erau.edu/db/degrees/ma-softwareeng.html
http://chiron.valdosta.edu/whuitt/col/cogsys/cogsys.html%20(
http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf
http://sites.computer.org/ccse/SE2004Volume.pdf
http://www.computer.org/portal/web/swebok
http://www.sei.cmu.edu/library/abstracts/reports/10tn016.cfm
http://www.sei.cmu.edu/library/abstracts/reports/91tr002.cfm

139 | CMU/SEI-2010-TR-005

[ISO 2009]

International Organization for Standardization. ISO/IEC/IEEE 24765 - Systems and Software

Engineering – Vocabulary. http://www.iso.org/iso/catalogue_detail.htm?csnumber=50518 (2009).

[LSEC 2009]

Leaders in Security. ―Building In ... Information Security, Privacy And Assurance.‖ Paper

presented at the Knowledge Transfer Network Paris Information Security Workshop. Paris,

France, March 30, 2009.

[Mead 2010]

Mead, Nancy R.; Hilburn, Thomas B.; & Linger, Rick. Software Assurance Curriculum Project

Volume II: Undergraduate Course Outlines (CMU/SEI-2010-TR-019, ESC-TR-2010-019).

Software Engineering Institute, Carnegie Mellon University, 2010.

http://www.sei.cmu.edu/library/abstracts/reports/10tr019.cfm

[OPM 2010]

U.S. Office of Personnel Management. Federal Cyber Service: Scholarship for Service.

https://www.sfs.opm.gov/ (2010).

[PPS 2009]

Partnership for Public Service & Booz Allen Hamilton. Cyber IN-Security: Strengthening the

Federal Cybersecurity Workforce. Partnership for Public Service.

http://ourpublicservice.org/OPS/publications/viewcontentdetails.php?id=135 (July 2009).

http://www.iso.org/iso/catalogue_detail.htm?csnumber=50518
https://www.sfs.opm.gov/
http://ourpublicservice.org/OPS/publications/viewcontentdetails.php?id=135%20(July
http://www.sei.cmu.edu/library/abstracts/reports/10tr019.cfm

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Software Assurance Curriculum Project Volume I: Master of Software Assurance

Reference Curriculum

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Nancy R. Mead, Julia H. Allen, Mark Ardis, Thomas B. Hilburn, Andrew J. Kornecki, Richard Linger, James McDonald

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

ESC-TR-2010-005

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Modern society depends on software systems of ever-increasing scope and complexity in virtually every sphere of human activity,

including business, finance, energy, transportation, education, communication, government, and defense. Because the consequences of

failure can be severe, dependable functionality and security are essential. As a result, software assurance is emerging as an important

discipline for the development, acquisition, and operation of software systems and services that provide requisite levels of dependability

and security.

This report is the first volume in the Software Assurance Curriculum Project sponsored by the U.S. Department of Homeland Security.

This report presents a body of knowledge from which to create a Master of Software Assurance degree program, as both a stand-alone

offering and as a track within existing software engineering and computer science master’s degree programs. The report details the

process used to create the curriculum and presents the body of knowledge, curriculum architecture, student prerequisites, and expected

student outcomes. It also outlines an implementation plan for faculty and other professionals who are responsible for designing,

developing, and maintaining graduate software engineering programs that have a focus on software assurance knowledge and

practices. The second volume, Undergraduate Course Outlines (CMU/SEI-2010-TR-019), presents seven course outlines that could be

used in an undergraduate curriculum specialization for software assurance.

14. SUBJECT TERMS

software assurance, software assurance education, software engineering education, software

security education

15. NUMBER OF PAGES

154

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Software Assurance Curriculum Project Volume I: Master of Software Assurance Reference Curriculum
	Table of Contents
	List of Figures
	Acknowledgments
	Executive Summary
	Abstract
	1 The Software Assurance Curriculum Project
	2 Curriculum Project Foundations
	3 Guidelines for Developing This Curriculum
	4 Proposed Outcomes When a Student Graduates
	5 Background Expected of Students Entering the Program (Prerequisites)
	6 MSwA2010 Curriculum Architecture
	7 Core Body of Knowledge
	8 Implementation Guidelines
	9 Next Steps and Dissemination
	Appendix A: Bloom’s Taxonomy and the GSwE2009
	Appendix B: Coverage of the Practices by the Core Body of Knowledge
	Appendix C: Interview Questionnaire Summary
	Appendix D: Comparison to Other Programs
	Appendix E: Comparison of MSwA2010 Knowledge Units to GSwE2009 Core BoK Knowledge Units and Maturity Levels
	Appendix F: Course Descriptions for the MSwA2010 Curriculum
	Glossary
	Acronyms
	References

